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Abstract

We examine the profitability of different R&D location strategies of firms in a

dynamic industry model. Firms engage in imitative and innovative activities in

order to improve their products’ quality, which determines their competitiveness.

When choosing the set of locations in which to operate firms face a fundamental

trade-off: co-locating with competitors’ generates opportunities to improve prod-

uct quality through imitation, but at the same time it increases the risk of losing

one’s competitive edge through outgoing spillovers. Being unable to fully predict

competitors’ moves, in making location choices firms rely on heuristics based on

the expected present values associated with alternative location patterns. In a

positive perspective, our model replicates key stylized facts highlighted in the per-

tinent empirical literature. On normative ground, we identify industry scenarios in

which a firm should enter (not enter) a location even if the expected present value

of doing so is negative (positive). Our key contribution is to provide a taxonomy

of suitable firm location strategies depending on firm type and industry character-

istics in a dynamic environment with endogenous cluster formation.
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1 Introduction

Choosing locations for their R&D and production activities is one of the key choices

firms have to make. A large stream of literature, relying on empirical evidence from

a variety of industries, highlights that the choice about entering or exiting a specific

location heavily depends on firm and location characteristics (see e.g. Alcacer and

Chung (2007); Alcacer and Zhao (2012); Livanis and Lamin (2016)). In particular, in

knowledge intensive industries, where firms’ competitive advantage strongly depends

on their ability to create and acquire knowledge (e.g. Cassiman and Veugelers (2006);

Chesbrough (2003)), the consideration of induced knowledge flows is an important

determinant of location choices (e.g. Alcacer and Chung (2007); Grillitsch and Nilsson

(2017)). Furthermore, also the number of locations chosen by firms appears to depend

systematically on firm characteristics, like innovative and imitative capabilities (see

Leiponen and Helfat (2011)). Notwithstanding this empirical evidence, a systematic

analysis of the impact of firm type and industry characteristics on optimal location

strategies has not yet been fully developed in a theoretical perspective.

Whereas location choices are often seen as strategic long term decisions, their dy-

namic aspect is gaining importance in particular for high tech industries characterized

by strong dependence on human capital and relatively low physical investments. Katz

and Wagner (2014) point out that ”..a remarkable shift is occurring in the spatial ge-

ography of innovation”[p. 1], with innovation districts emerging in many urban areas

distinct from the established cluster regions like Silicon Valley. A typical pattern for

the establishment of such innovation districts is that highly innovative companies move

facilities to a certain district incentivizing other firms to move there as well.1 In light of

this volatility of locational pattern firms have to be aware of potential future changes

in the location of key clusters in their industry when estimating the implications of

different location choices for their competitiveness. Hence, determining the location

choice which yields the highest expected future profit stream is a very challenging task.

This paper aims at developing a theory of firms’ strategic R&D location choices by

relying on a dynamic industry model incorporating heterogeneous firms and a number

of different industry environments. Throughout the paper we consider all innovative

and imitative activities of firms as R&D and focus on (expected) knowledge flows as

a crucial factor behind firms’ location choices. A key feature of our approach is that

we analyze optimal location choice strategies in a dynamic context, where location

1 Prominent examples in this respect are the moves of Twitter to the Mid-Market neighborhood

in San Francisco or of Google to Bakery Square in Pittsburgh, leading to the emergence of innovation

districts at these locations.
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patterns of competitors endogenously change over time. In general, firms are not able

to perfectly predict future developments in location patterns, but our analysis shows

that their strategies should nevertheless account in a systematic way for expected future

changes in the location pattern of the industry. In particular, in light of this dynamic

aspect we explore how optimal location strategies, determining the target number and

selection of R&D locations, differ between imitation- vs. innovation-oriented firms and

depend on the relative share of innovation vs. imitation oriented competitors.

Overall, the contribution of this paper is twofold. First, in a positive perspective, we

develop a properly micro-founded theoretical framework to investigate heterogeneous

firms’ location choices in different industry environments. The key property of this

framework is that it is fully consistent with the stylized facts identified in the literature.

Second and more important, in a normative perspective, we show that there exist

scenarios in which firms should systematically deviate from choosing the action yielding

the highest expected future profits under the current location pattern. In particular,

we characterize the optimal deviation as a function of the attributes of the firm and of

its industry environment.

In our analysis, we rely on an agent-based industry simulation model with firms

competing in a quality-augmented Cournot oligopoly.2 Each firm’s product quality

depends on its innovation capabilities and on its technical knowledge (that is assumed to

be distributed across locations), so that firms benefit from knowledge complementarities

when choosing multiple locations. A firm can improve its product quality through

innovation, imitation, or the usage of the knowledge publicly available in a location

where it is active. Firms characterized by different abilities to innovate or imitate choose

whether to enter, exit, or switch across locations, based on strategy rules incorporating

the trade-off between the expected gains from imitating competitors and the potential

losses resulting from being imitated.

We assume that firms are able to predict the probabilities of innovation and im-

itation of all firms in the industry, as well as the profit implications of such events

for a given distribution of firms across locations. However, they face strategic uncer-

tainty about the future location choices of their competitors and are not able to fully

predict them. To deal with this uncertainty, firms are assumed to apply a relatively

simple heuristic decision rule when considering a possible change of location.3 More

2We use a simulation model since the complexity of the dynamics emerging from the interplay of

the location decisions of heterogeneous firms precludes an analytical treatment. The potential of agent-

based models for the analysis of industry dynamics and strategic firm behavior has been demonstrated

for example in Li et al. (2019); Landini et al. (2017) or Dawid and Reimann (2011). This literature,

however, so far has not treated firms’ location choice, which is an innovative feature of our analysis.
3The merit of using relatively simple decision heuristics for making good decisions in complex
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specifically, we focus on a family of decision rules based on the (normalized) difference

between the expected value of the discounted future profit streams with and without a

potential location change, keeping the locations of all competitors constant. Each rule

is characterized by a single threshold parameter determining how large this difference

has to be for location entries, exits, and switchings. If this strategy parameter is set

equal to zero, then the rule coincides with the net present value (NPV) one where ex-

pected future profit streams are proxied by the value determined under the assumption

that location choices of competitors stay constant.

As a first step, we show – using an empirically based parametrization of the model

– that the location patterns emerging in our framework are fully consistent with the

available empirical evidence on different aspects of firms’ location choices. In particular,

our model jointly reproduces a number of stylized facts identified in the pertinent lit-

erature.4 (i) Consistently with Alcacer and Chung (2007), we find that technologically

advanced firms entering an industry tend to avoid locations with industrial activity

to distance themselves from competitors. Conversely, technological laggards tend to

favor locations with high industrial activity in order to maximize inwards spillovers.

(ii) Imitation oriented firms tend to choose a higher number of locations than firms

introducing ‘new to the market’ innovations, as shown in Leiponen and Helfat (2011).

(iii) The effect of the number of competitors in a location on the propensity of tech-

nologically leading firms to leave that location is positive and larger than the effect on

laggards (see Livanis and Lamin (2016)).

Having established the ability of our framework to endogenously generate location

patterns that are consistent with the stylized facts, we take a normative approach

and use our model to characterize the type of strategy that is the most profitable for

different types of firms in different industry environments. We find that for a firm with

a higher ability to imitate than to innovate, which we refer to as an ‘imitator’, it is

optimal to apply a standard NPV rule – i.e. to enter (exit) a location if and only if the

estimated discounted future profits under the current location pattern of competitors

environments has been discussed e.g. in Gigerenzer and Gaissmaier (2011). In particular they argue

that heuristics with few free parameters are in many uncertain environments characterized by ’ecological

rationality’ in the sense that they are better adjusted to generate good decisions than more sophisticated

rules with a higher number of free parameters reacting more sensibly to the observed data. See Joo et al.

(2019) and Cui et al. (2018) for recent contributions analyzing the performance of heuristics in different

managerial decision problems. The potential of agent-based models as a tool to replicate aggregate

level empirical patterns from individual decision making based on heuristics has been highlighted e.g.

in Smith and Rand (2018).
4The reproduction of the stylized facts is carried out for a benchmark setting in which all firms in

the industry use the instance of our class of strategy rules that coincides with the net-present-value

rule.
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are higher if the firm adds (drops) that location – when the firm is operating in an

industry populated mainly by innovative firms (those with higher ability to innovate

than imitate).5 However, more surprisingly, there are a number of cases in which

following the standard NPV rule is not optimal. In particular, if the majority of

competitors are also imitators, then it is optimal for an imitator to enter (exit) a

location as long as the change of the estimated value of discounted future profits,

based on the current locations of all competitors, exceeds a strictly negative (positive)

threshold. Intuitively, it can be profitable for an imitator to enter a location with

negative NPV in such an industry environment because the fact that the location is

relatively attractive for that imitator implies that it is also attractive for other imitators

and with high probability additional imitators will enter the location in the future.

Since these additional entries enlarge the options for imitation in the location, the

NPV under the current location pattern systematically underestimates the value of

that location for an innovator. The optimal location strategy of the firm should then

account for that bias.

The key properties of the optimal location strategy of an ‘innovator’ – i.e. a firm

more able to innovate than to imitate – are quite different than those of an imitator.

When such a firm operates in an industry where most competitors are imitators, it

is optimal to enter (exit) a location whenever the associated change in the value of

the estimated discounted future profits computed taking as given competitors’ current

locations exceeds a strictly positive (negative) threshold. A similar intuition to that

developed above also explains this result. By entering a location the innovator makes

it more attractive for the imitators in the industry and therefore imitators will enter

that region in the future with higher probability. This reduces the value of the location

for the innovator, which is concerned about outwards spillovers. In an industry in which

also the majority of competitors are innovators, entering a location will not result in a

systematic change of the location patterns of the competitors and no systematic bias

arises from considering the NPV under the current location pattern. Accordingly, we

find that it is optimal for an innovator in such and industry environment to enter (exit)

a location as long as the change in estimated discounted future profits is non-negative

(non-positive).

5Optimality here has to be interpreted within the considered class of decision rules. Restricting

attention to this class captures the bounded rationality of decision makers facing a complex dynamic

environment, at the same time allowing us to gain insights about important qualitative properties of

the location rules that are most profitable. In light of the rich structure of our industry environment,

characterizing a Markov-Perfect-Equilibrium of a dynamic game assuming all Markovian strategies for

each firm as the strategy space is not feasible.
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The rest of the paper is organized as follows. Section 3 illustrates the structure,

dynamics, and parametrization of our model. Section 4 focuses on the validation of

the model, showing that its insights are fully consistent with the key stylized facts

identified by the pertinent literature on firms’ location choices. Finally, Section 5 uses

the model to investigate firms’ optimal location strategies, showing that it is often

optimal for firms to depart from the usage of standard NPV rules in taking their

decisions. Section 5 concludes and two appendices contain the technical details of the

model and robustness checks on our numerical analysis, respectively.

2 Related Literature

Our paper is related to several streams of research. First, we build on the large amount

of empirical work examining the role of local knowledge spillovers for firm location and

the emergence of agglomerations.6 Whereas early work (e.g. Ellison and Glaeser (1997))

has highlighted that the existence of local knowledge flows between firms is a driver for

the emergence of firm agglomerations,7 more recent studies point towards the relevance

of the trade-off between inwards and outwards spillovers in determining how attractive

local proximity to competitors is for a firm. For instance, Giarratana and Mariani

(2014) find, based on a rich dataset of European inventions, that in locations with

high levels of absorptive capacity firms tend to reduce their use of external knowledge

sources fearing to be imitated. Relatedly, Grillitsch and Nilsson (2017) employ Swedish

firm level data to show that knowledge intensive firms benefit less from local knowledge

spillovers than firms with comparably low in-house knowledge and that their location

in a knowledge intensive region might actually have a negative impact on their growth.

Starting with Shaver and Flyer (2000) seminal contribution, a number of empirical

studies have shown that firms’ location decisions are affected by the trade-off between

(expected) inwards and outwards spillovers. This stream of literature finds that differ-

ent types of firms evaluate this trade-off differently and therefore systematically differ

in their location choices. Alcacer and Chung (2007) consider the location decisions of

firms entering the United States through greenfield investments and show that a higher

industrial activity in a region – measured by the number of patents – reduces the prob-

ability that technical leaders in their industry, in terms of R&D intensity, locate in

that region. For technical laggards, exactly the opposite effect arises. Whereas Alcacer

6Clearly there are also other important aspects relevant for location choice that have been extensively

discussed in the literature, like the availability of high-skilled workers (e.g. Almazan et al. (2007)), or

institutional conditions (e.g. Lee and Mansfield (1996); De Beule and Duanmu (2012)).
7Such knowledge flows might run through several channels, in particular face-to-face communication

between employees or labor mobility, see e.g. Grillitsch and Nilsson (2017).
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and Chung (2007) focus on firms’ selection of the location to enter, Livanis and Lamin

(2016) consider the effect of inward and outward spillovers on the decision to leave

a location. In particular, they study which factors underline firms’ decisions to close

their R&D facilities in a region. Consistently with the hypothesis that the balance of

(perceived) knowledge inflows and outflows for a firm drives location decisions, they

find that technologically leading firms are more likely to close their R&D facilities as

the presence of other domestic labs increases, whereas laggards are less likely to do

so. Again, these findings suggest that leaders design their location strategies in a way

to avoid outwards spillovers.8 Furthermore, Livanis and Lamin (2016) also show that

laggards are less likely to leave a location in which technological leaders, rather than

other laggards, are present.

The observation that the trade-off between (expected) inwards and outwards spillovers

affects location choices has been confirmed in the context of multi-national enterprises

(MNE). Using Italian data, Mariotti et al. (2010) find that MNE are reluctant to ag-

glomerate with domestic firms due to their perception that knowledge inflows from

such firms are on average lower than the leakages towards them. However, MNE are

willing to co-locate with other MNE since they expect a positive balance of inwards

and outwards spillovers in this case. Belderbos et al. (2017) show that also within the

group of MNE location strategies differ systematically. Focusing on the sign of the

impact of the strength of ‘local’ science in a country on a firm’s probability of locating

in that country, they find that it depends on how strongly a MNE’s R&D activities are

science oriented.

Leiponen and Helfat (2011) focus on the number of R&D locations as an important

property of firms’ location strategies and show that also in this respect expected inwards

and outwards spillovers play an important role. In particular, they show that the type

of R&D activities of a firm – imitative versus new-to-the-market – determines whether

innovation output is positively correlated with multi-location R&D. For ‘imitative’

innovations, where knowledge sourcing from external sources is crucial, they find a

positive correlation between the number of R&D locations and output, whereas no

such correlation is found for ‘new-to-the-market’ innovations.

Our paper contributes to this rich empirical literature along several dimensions.

First, we provide an integrated theoretical framework for analysis that considers both

8Several alternative approaches for avoiding outwards spillovers have been identified in the litera-

ture, like strengthening internal linkages (Alcacer and Zhao (2012); Belderbos and Somers (2015)), or

increasing the technological distance to co-located firms (Wang and Zhao (2018)). In our model, we

abstract from such alternative approaches and focus on exit from a location as the main instrument to

avoid outwards spillovers.
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entry and exit (as well as location switching) decisions as crucial parts of a firm’s

location strategy. Second, we show that the empirically observed differences in location

choices of technological leaders and laggards are consistent with both types of firms

using an identical strategy rule based on a net present vale criterion applied under

naive expectations about the future changes in the location patters of competitors.

Third, we show that the optimal strategy rules differ between leaders and laggards and

that firms should adjust their strategy rules depending on the innovativeness of their

competitors in the industry. Hence, our analysis provides a theoretical underpinning for

the observed empirical patterns and also provides new managerial implications relative

to the pertinent literature.

By developing a dynamic model of location choice that incorporates emerging

knowledge spillovers as well as strategic interaction in a multi-firm setting, we sub-

stantially extend the theoretical literature in this domain. Theoretical approaches to

analyze firms’ location choices in the presence of knowledge spillovers are surprisingly

sparse. Gersbach and Schmutzler (1999) analyze a static multi-stage duopoly model in

which the choice of R&D and production locations of both firms induces external and

internal spillovers that influence production costs. Considering a similar multi-stage

framework Gersbach and Schmutzler (2011) study the interplay of firms’ decision about

foreign direct investment and R&D offshoring. Belderbos et al. (2008) analyze the role

of spillovers for the R&D location decision of multi-national firms in a static model

with strategic interaction. Consistently with much of the empirical evidence reviewed

above they show that technology leaders invest more in domestic R&D, thereby reduc-

ing outgoing spillovers, the larger is the parameter governing the strength of external

spillovers between firms. Lagging firms, in contrast, increase the share of foreign R&D

as technology sourcing becomes more effective.

Due to the static nature of these studies they cannot distinguish between firms’

entering and exiting decisions and also cannot take into account potential path depen-

dencies emerging from location decisions. In particular, technological leadership and

relative competitiveness might change over time. Furthermore, the duopoly structure

of these models does not allow to study the implications of the co-existence of a firm

cluster with isolated competitors. Colombo and Dawid (2014) address these issues by

considering a dynamic oligopoly model where all firms initially choose their location

and then continuously compete on a joint market. Production costs change over time

and are determined by own R&D effort, and in case of co-location with other firms,

by incoming local spillovers. It is shown that initial advantages with respect to the

knowledge stock as well as superior R&D technology of a firm reduce the incentives

of that firm to join competitors in a cluster. Differently from the model considered in
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this paper, in Colombo and Dawid (2014) firms are restricted to a single location and

also cannot relocate after they have made their choice at the beginning of the game.

Instead, in this paper, firms have the possibility to react to dynamic changes in the

industry structure and in their relative competitiveness by entering a new location,

exiting an existing one, or relocating their R&D activities between two locations. This

allows for a much richer analysis of firms’ location strategies.

3 The Model

We consider an industry populated by a set Nt of firms that compete on a common

market. Firms engage in R&D activities, which can be conducted in several locations,

in order to improve their product quality. At each time t = 1, 2, ... firms interact in the

market in the framework of a quality augmented Cournot oligopoly (see e.g. Symeonidis

(2003)). R&D consists of innovative and imitative activities by firms that are located

in the same region and differ in their ability to innovate and imitate. Each location is

characterized by a level of academic activity, influencing the innovation probabilities of

firms in that location, and by specific location costs (capturing e.g. rental and labor

costs).9 Firms routinely reconsider their location choices, comparing the expected

future profit flows associated to entering, exiting, or switching locations with those in

the status quo. Each location strategy (exit, entry, switching) of a firm is determined

by an (exogenously given) threshold parameter, such that the action is taken only if the

expected net present value of the considered move exceeds that threshold. Additionally,

the industry dynamics exhibits market entry and exit.

3.1 Product Quality, Innovation, Imitation

Denote with Li,t ⊆ L the set of R&D locations of firm i, where L is the set of available

locations. Each location l ∈ L is characterized by the costs ϑlocl of operating in that

location. The set of all firms located in region l at period t is denoted with Fl,t.
The quality qi,t of the product of firm i can be improved over time through product

innovation and imitation. Since the focus of our analysis is on firms’ location choice

rather than on the determination of innovation and imitation efforts, we abstract from

firms’ effort choices. In particular, we assume that each period t firm i successfully

9Other factors related to production conditions and costs are also likely to be important in deter-

mining firms’ location choices. However, here we abstract from such factors to concentrate on the role

of R&D activities.
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innovates with probability

IP(prod. innov. by firm i) = λi,tΨi,

where Ψi is the innovative ability of firm i and

λi,t = |Li,t|σ, σ > 0, (1)

captures the effect of the current set of firm i’s R&D locations on its innovation prob-

ability. Firm ability, Ψi > 0, is assumed to be constant over time. Furthermore, we

assume that Ψi is sufficiently small such that Ψi|L|σ < 1 for all firms i. Consistently

with the arguments provided e.g. by Leiponen and Helfat (2011) this formulation

captures the idea that firms profit from being close to different streams of academic

knowledge in different locations, where for reasons of simplicity we assume that the level

of academic activity is identical in each location. More precisely, firm i’s innovation

productivity λi,t increases with its number of locations. The parameter σ determines

how strongly innovation productivity is (positively) affected by the diversification of

innovation activities across different locations. In particular, for σ = 0 no positive

effect of diversification exists, while the effect becomes stronger the larger σ is. For

σ ∈ (0, 1) there is R&D substitutability across regions in the sense that the innovation

probability of a firm present in several locations is lower than the sum of the innovation

probabilities arising if in each of these locations one ‘single-location’ firm is performing

R&D.

A successful innovation yields a new product quality. In order to account for the

uncertainty associated with innovation processes, we assume that the extent of the

product improvement is stochastic. The resulting quality is given by

q̃i,t = qi,t(1 + ηi,t),

where ηi,t is drawn from a uniform distribution on [0, η̄]. Furthermore, we assume that

firm i can imitate any firm k ∈ Fl,t in any location l ∈ Li,t with a fixed probability

ξi ≥ 0. To keep our analysis as simple and transparent as possible, we divide the

population of firms into two groups that we refer to as ‘innovators’ and ‘imitators’.

All innovators share the same innovative and imitative abilities, Ψin > 0 and ξin ≥ 0

respectively. For imitators, the corresponding abilities are Ψim > 0 and ξim ≥ 0,

where we assume that the innovative ability of innovators is strictly larger than that

of imitators and that the imitative ability of imitators is strictly larger than that of

innovators, i.e. Ψin > Ψim and ξim > ξin.

Upon successful imitation of firm k in region l, firm i is able to achieve the same

quality qk,t as that firm. To account for the fact that product innovations become part
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of the ‘standard’ product with some delay (see e.g. Klepper (1996)), we assume that all

product qualities become available to all firms after ω periods. Combining the different

channels of quality improvements, we obtain that

qi,t+1 = max[qi,t, q̄t+1−ω, q̂i,t, q̃i,t], (2)

where q̂i,t = maxj∈Ii,tqj,t, and Ii,t ⊆ Nt denotes the set of firms successfully imitated

by firm i in period t. Furthermore, q̄t = maxj∈Nt qj,t denotes the best quality on the

market in period t.

3.2 Cournot Equilibrium

On the demand side, we consider a representative consumer with utility function

U(x, q) = α
∑
i∈N

xi −
1

2

∑
i∈N

x2
i

q2
i

− γ
∑
i∈N

∑
j∈N\{i}

xiqj
qiqj

, (3)

where xi denotes the quantity of the product of firm i ∈ N that is consumed, and qi the

quality of that product. The consumer maximizes utility with respect to xi subject to

a given fixed consumption budget β > 0. By inverting the resulting demand function,

we obtain for firm i at time t that

pi(xt, qt) = θ(xt, qt)

α− xi,t
q2
i,t

− γ
∑

j∈Nt\{i}

xj,t
qi,tqj,t

 , (4)

where θ(x, q) is a multiplier ensuring that the consumer’s budget constraint is satisfied.

We normalize marginal production costs of all firms to zero. Standard calculations

yield that the equilibrium profit of firm i can be written as10

πi(qt) =
α2θ(x∗t , qt)

(2− γ)2(2 + γ(nt − 1))2

(2− γ)qi,t + γ
∑

j∈Nt\{i}

(qi,t − qj,t)

2

−
∑
l∈Li,t

ϑlocl ,

(5)

where x∗t is the vector of Cournot equilibrium quantities and nt = |Nt| denotes the

number of firms in the industry at time t. Hence, the profit of firm i increases with

respect to its own product quality, but it diminishes if the quality of a competitor

increases. This property of our market framework is crucial to understand the effects

on a firm’s profit of the innovation and imitation of the firm itself and of those of its

competitors.

10In Appendix A we provide a derivation of the inverse demand and of the firms’ equilibrium quantity

decisions.
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3.3 Location Decisions

In each period, firm i considers to change the set of locations in which it operates with

probability ρ. We assume that firms can at most enter or exit one location at each

point in time – e.g. because of the transaction costs involved in changing locations.

Hence, at any point in time a firm has three different strategies to change its set of

locations: exiting, entering, or switching location (i.e. moving from one of its locations

to another). Location decisions are based on a net present value criterion. Net present

values are estimated by applying Monte Carlo simulations of possible evolutions of the

market environment over a planning horizon of length T , taking into account possible

changes of firms’ qualities.

For a given profile of firm locations L̃ = (L̃i)i∈I , firm i estimates the present value

of its future profit stream as

πi,t(L̃) = IE
T∑
τ=1

δτπi(q̃t+τ ), (6)

where q̃j,t = qj,t for all j ∈ Nt, q̃j,t+τ denotes the quality profile in period t+ τ (which

from the perspective of period t is a stochastic variable) and δ ∈ (0, 1) denotes the

discount factor. It should be noted that the expectation is taken under the assumption

that the firm location profile remains constant between periods t and t + T .11 This

simplifying assumption captures the fact that firms operate in a stochastic environment

with strategic uncertainty about future changes in their competitors’ location decisions.

Therefore, the expression calculated according to (6) is in general only a proxy of the

actual net present value that would take into account the actual location strategies of

all competitors.

Considering first the possibility of entering a location. For each k /∈ Li,t, the firm

calculates a proxy of the net present value (relative to the current present value) of

entering location k. Let Leni (k) = {k} ∪ Li,t be the set of firm locations after entering

11To approximate the expected value on the right hand side of (6), we consider the mean value over

a batch of ς Monte-Carlo simulations. To make the simulation runs under the different location choice

options better comparable, the random parts of the realization of events is fixed across the considered

scenarios for each firm and each decision in a given period. To be more precise, for each event occurring

with some probability (that might vary across the scenarios) a single schedule of realizations of a

(uniformly distributed in [0,1]) random variable is determined for each run in the batch. This schedule

is used in each of the scenarios to determine whether the event occurs by checking whether the value

of the random variable is lower than the event probability. This procedure ensures that the systematic

effects of probability changes are not dominated by the noise resulting from different realizations of the

random variables across scenarios.
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k, then the relevant net present value is given by

NPV en
i,t (k) =

πi,t(Leni (k))− πi,t(Li,t)− ϑen

πi,t(Li,t)
.

The parameter ϑen captures the costs of entering a location, which is assumed to be

homogeneous across locations and firms. Analogously, the firm computes the (relative)

net present value of exiting for each location l ∈ Li,t, denoted by NPV ex
i,t (l), and the net

present value NPV sw
i,t (l, k) of replacing location l by location k, for each pair l ∈ Li,t

and k /∈ Li,t, in its set of locations. Exit and switching costs are denoted by ϑex and

ϑsw, respectively.

Among all options to enter, exit, or switch locations, the firm only considers those

that satisfy the criterionNPV en
i,t (k) ≥ Ken

i , NPV ex
i,t (l) ≥ Kex

i andNPV sw
i,t (l, k) ≥ Ksw

i ,

respectively. The parameters Ken
i ,Kex

i ,K
sw
i determine the location choice strategy

(enter, exit, switch) of firm i. We explore the specific role of these strategy parameters

in the second part of the paper. As will be shown below, the case of Ken
i = Kex

i =

Ksw
i = 0 that would correspond to the standard net-present-value rule is not always

optimal. Intuitively, this is due to the fact that a firm’s location decision might influence

competitors’ future location choices, which introduces systematic biases of the NPV

proxies calculated under the current location pattern.

In case the threshold value is not met for any of the considered options, the firm

does not change its location choice. Conversely, if there are several changes in the set of

locations that satisfy the firm’s heuristic rule for potential location changes, the option

with the highest net present value is selected.

3.4 Industry Dynamics and timeline of the model

The dynamics of the model is not only driven by changes in firms’ locations but also by

entry in, and exit from, the industry. In each period, a new firm enters the industry with

probability χenζen(π̄t), where π̄t = β/|Nt| is the average industry profit and ∂ζen/∂π̄t ≥ 0.

The function ζen is normalized in such a way that ζen(β/n̂) = 1, where n̂ is a parameter

determining the average number of firms in the industry. Hence, χen determines the

average entry rate in the industry. The new entrant is an innovator or an imitator

with equal probability, which determines its imitation probability and innovative ability

(ξi,Ψi). The product quality of the entrant’s product is chosen according to the uniform

distribution U [q̄t, q
max
t ] if the entrant is an innovator, where q̄t is the average and qmaxt

the maximal quality on the market at time t. An imitator enters instead with a quality

qmint , which is the minimal quality on the market in t. This distinction is based on the

assumption that an innovation oriented firm considers entering a market only if it has
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already developed relevant innovations for that market, whereas an imitation oriented

firm needs to first enter the market before being able to improve its product quality.

The location choice of an entrant firm i is determined by choosing the location with

maximal value πi,t({k}) across all locations k ∈ L.

Concerning market exit, we assume that in each period each firm exits the industry

with probability χexζex(πi(qt)), where ∂ζex/∂πi ≤ 0 and ζex is a logit function normal-

ized in order to guarantee that
∑

i∈Nt
ζ(πi(qt)) = 1. In what follows, we consider a

parameter setting such that χex = χen. The chosen formulation guarantees in a simple

way a stationary fluctuation of the number of firms in the industry around n̂.

Finally, the timeline of the model is as follows.

1. Firms compete in quantities and Cournot profits are determined.

2. Firms simultaneously choose their locations.

3. Imitation and innovation take place.

4. All qualities are updated according to Equation (2).

5. Industry exit and entry occur and the entrant (if any) makes its location choice.

3.5 Baseline Parametrization

The remainder of this paper is based on numerical simulations carried out for a baseline

parametrization of our model. We focus on an oligopolistic industry with an average

number of n̂ = 6 firms. Initially half of the firms are innovators and half are imitators,

and each firm has one random location. Each entering firm is equally likely to be an

innovator or an imitator. In all simulations we assume that there are |L| = 5 locations.

We show later in the paper that our main qualitative findings carry over to a scenario

with a higher number of locations.

An important goal underlying the design and parametrization of our model is to

account for the different stylized facts about firms’ entry/exit decisions and location

strategies that have been highlighted in the pertinent literature. No empirical studies

of a single industry covering all the different indicators we are targeting are available.

Hence, in what follows, we rely on empirical insights from different industries to derive

a parametrization (see Table 1) that is broadly consistent with the available empirical

evidence. We rely on a discount factor corresponding to an annual discount rate of 4%,

which is a standard value in the literature. The entry probability χen is chosen such

that the average annual entry rate (i.e. the number of entering firms relative to the

number of firms in the industry) for the target number of firms in the industry (n̂ = 6)
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is 8.4%, which corresponds to the mean of the range of values reported in Geroski

(1995) for the UK. The lead time after which innovations become generally available in

the industry, ω, is set to 40 months consistent with evidence reported in Grant (2010)

[p. 304]. The value of the innovative ability of innovators is set to Ψin = 0.04, which

induces average innovation development cycle times of less than 25 months (depending

on the number of locations a firm is active in). Such cycle times are in line with

observations in different innovation oriented industries, see e.g. Griffin (1997). Using

U.S. data, Warusawitharana (2015) estimates the average increase of profitability from

a product innovation to be about 23%. The parameter η̄ has been calibrated such that,

in a setting in which all firms have identical qualities, the profit of an innovator whose

quality increases by the average factor 1 + η̄/2 grows by 23%. The imitators’ monthly

imitation probability is set at ξim = 0.05, which corresponds to the median of the

distribution of times to imitation reported for the mobile phone industry in Giachetti

and Lanzolla (2016). The chosen values for the probability that a firm considers a

change in location (ρ) as well as for location and entry costs (ϑloc, ϑen), together with

the value of the consumption budget (β), give rise to an annual location exit rate of

5.7% on average, which approximates the value of 5.4% reported by Livanis and Lamin

(2016) for the exit rates of R&D laboratories.12 Finally, the parameters α and γ –

describing market demand – have been chosen in a way to model industries in which

competitors offer close substitutes (γ = 0.7) and the market is sufficiently large to

allow all competitors to sell positive quantities even under considerable heterogeneity

of the product quality. Whereas in our setting some firms (innovators) are mainly

focused on innovative activities and other firms (imitators) rely mainly on imitation,

we assume that each type of firm is also to some extent active in the complementary

activity (imitation/innovation). More precisely, we assume that the ability of imitators

to innovate is at a level of 5% of that of innovators and viceversa. This choice of

parameter values guarantees a clear distinction between the two types of firms, at the

same time generating model outcomes that are consistent with the available empirical

evidence, as it is shown in the next section.

4 Validation of the Model: Industry Analysis

As a first step in our analysis, we check that the outcomes of our model in terms of

firms’ location choices are consistent with the patterns highlighted in the empirical lit-

12Strictly speaking the number reported in Livanis and Lamin (2016) applies to firms who have

multiple laboratories, which seems to be the relevant case for our setup given that the mean number

of locations of firms in our sample is larger than one.
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Par. Description Value

δ discount factor 0.9967

χen rate of entry into the industry 0.042

Ψi innovative ability (innovators/imitators) 0.04 / 0.002

σ cross regional R&D substitutability/complementarity 0.11

η̄ quality improvement per innovation 0.07

ω lead time for innovators 40

ξi imitation probability (innovators/imitators) 0.0025 / 0.05

ρ probability of considering location change 0.02

ϑloc operating costs in a location 0.01

ϑen costs of entering a location 3.0

α market size 2.0

β consumption budget 5.0

γ degree of horizontal differentiation 0.7

Table 1: Baseline parametrization of the model (the time unit is one month)

erature. In particular, we check whether our model is able to replicate the key stylized

facts that have been identified in the pertinent literature with respect to firms’ location

decisions.

Stylized Fact 1. When entering an industry, less technologically advanced firms favor

locations with high levels of industrial innovative activity, whereas technologically ad-

vanced firms locate apart from other firms to prevent spilling knowledge to competitors

(Alcacer and Chung (2007)).

In the context of our model, the statement of Stylized Fact 1 amounts to the

observation that upon entering the industry an imitator (i.e. a technologically less

advanced firm) is more likely to choose a specific location the larger is the number of

firms in that location.13 Conversely, the probability of an innovator to enter a location

is negatively affected by the number of potential imitators. In order to check whether

this pattern is reproduced by our model, we rely on a set of 200 batch-runs for 1000

periods under our baseline parametrization. To avoid dependence on initial conditions,

13Alcacer and Chung (2007) distinguish between technological leaders and laggards based on R&D

intensity, which in our framework corresponds to the innovation ability parameter Ψi. Since by defi-

nition in our setup innovators have a higher value of Ψi than imitators, we refer to innovators as the

technologically more advanced, and to imitators as the technologically less advanced, firms.
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we disregard the first 400 periods as a burn-in phase. For the purpose of this industry

analysis we assume that all firms follow a rule consistent with a standard NPV criterion.

In particular, all firms set their strategy parameters to zero, i.e. Ken
i = Kex

i = Ksw
i =

0, ∀i ∈ Nt. Despite the symmetry with respect to the strategy parameters, as it will

become clear below, the induced actions of innovators and imitators differ significantly.

We explore later in the paper how the individually optimal choices of these strategy

parameters differ across the different types of firms.

In Table 2, we show the results of two logit regressions based on our simulation data,

each carried out separately for innovators and imitators, with the probability of entering

a location as the dependent variable. In the first regression, we focus on two explanatory

variables only: the total number of firms in a location, and a dummy indicating whether

the location is empty (i.e. whether there are no firms in that location). In the second

regression, we further decompose the total number of firms distinguishing between the

number of imitators and innovators in a location. Considering the entry probabilities

of innovators, we conclude from the first column that they strongly prefer locations

where no other firms are present, while the number of firms in non-empty locations

hardly matters as long as one does not distinguish between imitators and innovators.

The second column shows, however, a strong negative correlation between the number

of imitators in a location and the entry probability of an innovator. Turning to an

imitator’s entry probability we find a strongly positive correlation with the number of

firms active in a location, where the effect is much stronger if these firms are innovators

rather than imitators. Overall, both the tendency of innovators to locate apart from

other firms as well as that of imitators to cluster are qualitatively fully consistent with

the evidence provided by Alcacer and Chung (2007).

Since both innovators and imitators share the same strategy parameter value, these

differences in location choices must be due to differences in the estimated net present

values associated with locations that are more or less populated by each of the two

types of firms. In particular, an entering innovator who expects to gain a quality ad-

vantage through her own innovations foresees that sharing a location with imitating

competitors fosters the prospects of the latter to catch-up with respect to product

quality. Such catching-up increases competition on the market, thereby reducing the

innovator’s profit. Hence, she has an incentive to avoid regions in which imitators are

present. This reasoning is fully in line with the narrative of Alcacer and Chung (2007)

that technologically advanced firms fear outgoing spillovers.14 In this respect, our

14Alcacer and Chung (2007) use the level of industrial patent activity to measure the potential

of spillovers, finding a negative impact on leaders’ entry probability. Furthermore, they also find a

positive impact of academic patenting in a region on leaders’ entry probability. Our model does not
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Entry Prob. Innovator Entry Prob. Imitator

No. firms in location 0.054∗∗ 1.2∗∗∗

(0.013) (0.03)

No. imitators in location −2.96∗∗∗ 1.52∗∗∗

(0.096) (0.08)

No. innovators in location 2.09∗∗∗ 6.07∗∗∗

(0.072) (0.28)

Non-zero firms in location −0.44∗∗∗ −0.54∗∗∗ 4.33∗∗∗ 1.37

(0.067) (0.11) (1.0) (1.04)

No. observations 2538 2562

R2 0.006 0.51 0.66 0.89

Significance Levels: ∗∗∗0.001; ∗∗0.01; ∗0.05

Table 2: Results of a logit regression on the probability of location choice at market

entry

model does not only reproduce the stylized fact but also captures the main underlying

mechanism. Imitators are less concerned about outgoing spillovers; moreover, imitating

other imitators in a region is a potentially profitable activity for them. Therefore, the

presence of imitators (as well as of innovators) makes a region attractive for imitating

firms, as is shown in the second column of Table 2.

Stylized Fact 2. Multi-location of R&D activity is positively associated with imitative

innovation output, but not to new-to-the-market innovations (Leiponen and Helfat

(2011)).

Within our framework, the statement of Stylized Fact 2 translates into the observation

that on average imitators are located in a larger number of locations than innovators,

which in our setting are mainly responsible for quality improvements going beyond

the technological frontier (‘new-to-the-market innovations’). In order to check this

conjecture, in Table 3 we estimate by means of an OLS the average number of locations

of a firm over its life cycle as a function of a dummy variable indicating whether the

firm is an imitator, as well as of the length of the firm life span. We find a significant

positive coefficient of the imitator dummy, which means that imitators are on average

explicitly incorporate differences in academic activity across locations. However, in light of the fact

that innovators generate knowledge but hardly engage in imitation, the positive correlation between

the number of innovators in a location and an innovator’s probability to enter that location seems

qualitatively consistent with this finding.

18



No locations

Imitator 0.36∗∗∗

(0.007)

Length of Life-Cycle 0.0009∗∗∗

(0.00002)

Constant 0.88∗∗∗

(0.006)

No. observations 8029

R2 0.37

Significance Levels: ∗∗∗0.001; ∗∗0.01; ∗0.05

Table 3: Results of a linear regression on the average number of locations of a firm over

its life cycle

active in more locations than innovators.15 The fact that the number of locations of

imitators is persistently higher than that of innovators is fully consistent with Stylized

Fact 2.

The economic intuition behind this finding is closely related to the arguments de-

veloped above. Considering innovators first, it should be noted that due to the cross-

location complementarity in the R&D success function (see Equation (1)), diversifying

their R&D activity to several locations is potentially profitable. However, in the calcu-

lation of the present values of different location options, these firms take into account

the negative implications of outgoing spillovers associated with multiple locations. Be-

ing present in several locations makes it more likely to share locations with imitators,

thereby improving the chances for the latter to successfully imitate the new products

an innovator brings to the market. Our results show that this second indirect effect

dominates the direct incentives to choose multiple locations.

Conversely, for imitators, there is no trade-off between the direct incentive to di-

versify induced by the complementarity of the innovation process and the indirect

effect driven by the benefits of imitating successful innovators and imitators. The fact

that imitators regularly choose more than one location indicates that no single cluster

emerges in our setting. Although each innovator typically chooses a single location,

these locations tend to differ among innovators, such that it is attractive for imitators

15Accounting for systematic differences in average lifetime between innovators and imitators, we find

that the actual average number of locations over the life cycle for these two types of firms are 1.02 and

1.4, respectively.
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to be in several locations at the same time.

Stylized Fact 3. The location exit rate of R&D labs (i.e. closing a lab in a specific

location) of technological laggards depends negatively on the presence of other firms in

the same location whereas the exit rate of technological leaders depends positively on

it (Livanis and Lamin (2016)).

In the framework of our model, interpreting R&D labs as firms, Stylized Fact 3

amounts to check that the number of firms in a location has a negative impact on the

exit rate of imitators and a positive one on that of innovators. To check Stylized Fact 3

we record, for each innovator and imitator in each period and for each location the firm

is in, the binary decision exit/no exit, the number of innovators and imitators in that

location, as well as the quality of the firm’s product relative to the average quality in

the industry, the number of the firm’s locations, the number of firms in the industry,

and the number of locations with no other firms. Again relying on 200 batch runs, we

use these data to estimate by means of logit regressions the probability that innovators

and imitators exit a region.

Focusing on innovators’ exit probability, Table 4 reveals a positive effect of the

number of imitators (consistently with Stylized Fact 3), but a negative effect of the

number of innovators. Two observations contribute explaining this last finding, which is

at odds with Stylized Fact 3. First, if other innovators are present in the same location,

the exit of an innovator is likely to have a relatively mild impact on imitators. Therefore,

leaving a location populated by other innovators does not substantially reduce imitation

opportunities, so that the gains of leaving the location are likely to be smaller than

the associated costs. Second, being endowed with some (albeit small) imitation ability,

in our setup innovators can profitably imitate other innovators, which makes locations

densely populated by innovators potentially attractive. The combination of these two

observations explains the negative effect of the number of innovators in a location on

the exit probability of an innovator. As far as the exit probabilities of imitators are

concerned, we find a negative effect of the number of both imitators and innovators,

which is in full accordance with Stylized Fact 3.

It is worth noting that other factors contribute explaining the probability of a

firm exiting a location. Unsurprisingly, the quality of the firm’s product relative to

the average quality in the industry has a strong positive effect on the exit rate of

an innovator, as the firm tries to escape competitors in the attempt to maintain its

quality advantage. Instead, for imitators there is no significant correlation between
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Exit Prob. Innovator Exit Prob. Imitator

No. imitators in region 1.95∗∗∗ 2.01∗∗∗ 2.10∗∗∗ −0.73∗∗∗ −0.74∗∗∗ −0.73∗∗∗

(0.07) (0.03) (0.03) (0.03) (0.02) (0.03)

No. innovators in region −0.54∗∗∗ −0.55∗∗∗ −0.82∗∗∗ −8.07∗∗∗ −8.08∗∗∗ −8.17∗∗∗

(0.05) (0.05) (0.06) (0.28) (0.28) (0.27)

Interaction innovators - imitators −0.47∗∗∗ −0.48∗∗∗ −0.35∗∗∗ 0.54∗∗∗ 1.71∗∗∗ 0.58∗∗∗

(0.02) (0.02) (0.03) (0.16) (0.16) (0.15)

Relative quality 9.25∗∗∗ 8.98∗∗∗ 1.71 −0.86

(0.53) (0.52) (1.17) (1.26)

No. firm’s locations 0.54∗ 0.40∗∗∗

(0.24) (0.05)

No. firms in industry −0.77∗∗∗ 0.33∗∗∗

(0.03) (0.03)

No. empty locations 0.04∗ −0.28∗∗∗

(0.02) (0.03)

Constant −2.73∗∗∗ 11.96∗∗∗ −8.41∗∗∗ 3.03 1.31 1.77

(0.06) (0.53) (0.61) (0.05) (1.18) (1.25)

No. observations 21466 23063

R2 0.427 0.472 0.472 0.72 0.72 0.73

Significance Levels: ∗∗∗0.001; ∗∗0.01; ∗0.05

Table 4: Results of a logit regression on the probability of location exit

relative quality and exit rate, since imitators with high relative quality are typically

co-located with innovators and hence have no incentives to exit that location. The

overall number of firms in the industry has a negative effect on the exit probability of

an innovator, and a positive one on the exit probability of an imitator. Indeed, this

covariate is essentially capturing the effects of competition in the industry. As the

number of firms in the industry grows larger, the profits accruing to each firm become

smaller, which reduces the benefits of imitating and the costs of being imitated. In

turn, this increases the probability that an imitator leaves a location and reduces the

probability that an innovator does so. The more locations a firm is active in, the

less significant are the opportunities it gives up by exiting a location, and hence the

larger is the exit probability. Finally, the number of locations with no competitors is

positively correlated to the exit probability of innovators, since moving to an empty

location allows to avoid outwards spillovers. On the contrary, the exit rate of imitators

is negatively correlated to the availability of empty locations, because such locations
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do not offer inwards spillovers and therefore are not attractive for them.

In order to illustrate the dynamic mechanisms generating the patterns highlighted

above, we show the actual evolution of the location choices of the different firms in

an industry for a part of a representative single run carried out under our baseline

parametrization. Figure 1 shows six snapshots for selected periods of this run. Each

node corresponds to a firm, where red nodes depict innovators and white nodes imita-

tors. Whenever two firms share the same location, a link between the nodes is shown,

with different colors corresponding to different locations. The starting point of our

illustration, depicted in panel (a), is a situation with one innovator and two imitators.

All firms share one location and the two imitators also share a second location. This

is consistent with our finding that on average imitators are active in more locations

than innovators. Up to the period depicted in panel (b), two imitators have entered

the industry, and consistent with our insights from Table 2, both of them enter at

the location with the largest number of firms. This generates a cluster (yellow links)

consisting of one innovator and four imitators in one location. To avoid the resulting

outwards spillovers, the innovator moves out of the cluster into a location without com-

petitors (see panel (c)). Panel (d) shows the entry of an additional innovator into the

industry, who consistently with Table 2 does not choose the location in which imitators

are present. The reason for sharing the location with the other innovator rather than

entering into an empty location is that although the firm is mainly focused on inno-

vation it also has some ability to imitate, which makes co-locating with an innovator

attractive. The reasons why the imitators remain in their cluster rather than imme-

diately following the innovator to her new location are threefold. They face switching

costs, the other imitators in their cluster might potentially be equally or even more

advanced than the innovator, and opportunities to relocate arrive only in random pe-

riods. However, as can be seen in panels (e) and (f), eventually the imitator’s cluster

‘dissolves’ because several imitators follow the innovators to their new location in order

to gain from potential inwards spillovers. Finally, panel (f) shows that in the presence

of a cluster consisting of both innovators and imitators an additional innovator entering

the industry chooses an empty location.

Summarizing, clusters emerge in this model as innovators enter an empty location

and other firms, mainly imitators, follow them with some delay. At that stage, the

location becomes less and less attractive for the innovators who eventually exit it,

often moving to another location without imitators (consistently with Stylized Fact 1).

This pattern clearly explains that the exit probabilities of innovators increase with the

number of firms that are present in a location. Furthermore, this shows that imitators

have no incentives to exit locations in which innovators are present. Hence, the negative
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# empty locations: 3 # empty locations: 3 # empty locations: 2

(a) (b) (c)

# empty locations: 2 # empty locations: 2 # empty locations: 1

(d) (e) (f)

Figure 1: Six snapshots of a single run illustrating the determinants of the location

choices of innovators (red) and imitators (white)
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dependence of the exit rate of imitators on the number of firms in a location is mainly

related to a strong dependence on the number of innovators in that location. Finally,

our illustrative example further highlights that imitators entering the industry tend

to select locations heavily populated by other firms. In this respect the dynamics of

cluster formation in our model resembles the observed pattern by which the entry of key

firms in an area prompts the formation of new industrial districts there (c.f. Footnote

1 for notable examples). It is also important to recall that all these patterns emerge

from firms using a relatively simple heuristic decision rule relying on estimated future

profits under naive expectations about competitors’ future location choices.

5 Strategy Analysis

The benchmark version of our model assumes that firms decide to enter, exit, or

switch locations if the expected change in future (discounted) firm profit associated

with that action is larger than the corresponding entry, exit, or switching costs; i.e.

Ken
i = Kex

i = Ksw
i = 0 for all i ∈ Nt. Expected future profits are calculated under

the naive expectation that the other firms will not change their location profiles. Al-

though all firms use identical decision rules, our discussion in the previous section has

clearly demonstrated that the induced actions differ systematically between innovators

and imitators. The benchmark rule can be seen as a plausible NPV-based heuristic,

although it is not clear that Ken
i = Kex

i = Ksw
i = 0 is indeed the profit maximizing

choice of a firm even within the class of strategy rules that we consider in our model.

In this section, we examine the characteristics of optimal location strategies for

imitators and innovators. In particular, we analyze how the optimal rules of these two

types of firms differ, and also how the optimal location choice strategies are influenced

by the degree of industry innovativeness. To address these questions, we systematically

vary the strategy parameters of Firm 1 in the industry, denoted as the ‘strategic firm’,

while keeping the strategy parameters of the other firms at the benchmark level Ken
i =

Kex
i = Ksw

i = 0, i > 1. The strategy of Firm 1 is parameterized by a single parameter

κ in a way that Ken
1 = κ,Kex

1 = −κ,Ksw
1 = max[0, κ]. Intuitively, a firm using κ > 0

has a low diversification location strategy in the sense that it is less willing to enter and

more willing to exit a location compared to a benchmark firm. This suggests that such

a firm on average should be present in a smaller number of locations than a benchmark

firm. Furthermore, also a higher requirement for switching locations implies a larger

degree of inertia with respect to the firm’s location choice relative to the benchmark.

The larger the value of κ, the stronger these effects are. A negative value of κ, on the

contrary, stands for a location strategy of strong diversification with numerous entries
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and few exits. The reason why the value of Ksw is set to zero if κ < 0 is that for

negative values of Ksw it is possible that for two regions the NPVs of the switches in

both directions are above the threshold, resulting in long sequences of back and forth

switching. Hence, we do not consider negative values of Ksw to be reasonable strategy

choices and rule them out here.

In order to gain a sound understanding of how the type of the strategic firm (inno-

vator vs. imitator) and the innovativeness of the industry are interacting to influence

the optimal strategy choice, we distinguish between four scenarios. Each scenario is

characterized by an exogenously given and constant number of the two types of firms

in the industry, as well as by the type of the strategic firm.

(i) Scenario INS: the strategic firm is an innovator operating in a strongly innovative

industry consisting of 4 innovative and 2 imitative firms.

(ii) Scenario INW: the strategic firm is an innovator operating in a weakly innovative

industry consisting of 2 innovative and 4 imitative firms.

(iii) Scenario IMS: the strategic firm is an imitator operating in a strongly innovative

industry consisting of 4 innovative and 2 imitative firms.

(iv) Scenario IMW: the strategic firm is an imitator operating in a weakly innovative

industry consisting of 2 innovative and 4 imitative firms.

In each scenario we vary the κ-value of the strategic firm in the interval κ ∈ [−0.15, 0.3]

with a stepsize of 0.025.16 For each considered value of κ we carry out a batch of

n = 200 simulation runs. Each run lasts for T tot = 1000 periods and we assume that

the strategic firm enters the industry in period t = 200, i.e. at a point in time when

potential initial transient effects have disappeared. For each run the discounted profit

stream of the strategic firm over the time interval t = 200 to t = 1000 is determined

and stored. Furthermore, we also record for each run the average number of locations

the strategic firm is present in during its 800 periods in the industry. Due to this

procedure we obtain for each value of κ a set of n realizations of the strategic firm’s

discounted profit and average number of locations. The following analysis is based

on the comparison of these data across the different values of κ for each of the four

scenarios. In order to be able to fully control the type distribution in the industry and

to keep it constant over time, for the purpose of the strategy analysis we abstract from

entry and exit into the industry apart from the single entry of the strategic firm at

16The interval is chosen in a way to guarantee that in all considered scenarios the profit maximizing

value is in the interior of the interval. All non-strategic firms are assumed to use κ = 0, corresponding

to the standard NPV rule.
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Figure 2: Penalized spline estimations of the expected discounted profits (a), market

profits (b), the average number of locations (c) and the switching rate (d) of the

strategic innovator in strongly innovative industry

t = 200. The graphical representations of the dependence of the key indicators from

the parameter κ in the remainder of this section rely on estimated non-linear models

using penalized spline methods (see, e.g., Kauermann et al., 2009).

We first consider the implications of different choices of the location strategy of an

innovator both in strongly and weakly innovative industries. Panels (a) and (b) of Fig-

ure 2 show the estimated discounted profit and the estimated discounted market profit

of the strategic innovator in a strongly innovative industry (scenario INS). Whereas

optimality is determined with respect to the discounted profit, considering also the

market profit – which does not account for location-, entry-, exit- and switching-costs

– is helpful to better understand the main determinants of the firm’s optimal strat-

egy. From panel (a) it is immediate to see that if the strategic innovator operates in a
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strongly innovative industry, the choice of the strategy parameter is of little relevance

for the firm’s discounted profits. Whereas with a negative value of the strategy pa-

rameter κ the firm is typically active in several locations (see panel (c)), which induces

high market profits (see panel (b)), these additional market profits are exactly offset

by the additional location costs. Hence, the firm’s total discounted profit under such

a diversification-oriented strategy is virtually identical to that obtained with a non-

negative value of κ, which induces concentration in a single location only and reduces

the number of links with imitators (see Figure 3(a)). Furthermore, the innovator in a

strongly innovative environment refrains from switching between locations. The rea-

son why in this industry environment the strategic innovator does not switch locations

regardless of the value of κ is closely related to the arguments put forward in Section

4 to explain the negative dependence of innovators’ exit rate on the number of inno-

vators in that location. In a strongly innovative industry, the location of an innovator

is typically shared with other innovators as well as with imitators. Therefore, even

if the strategic innovator leaves this location (e.g. by switching to another location)

the imitators have the possibility to improve their product quality by imitating other

innovative firms. Hence, the competitive advantage that the strategic innovator can

achieve by leaving such a densely populated location is relatively small. As we elabo-

rate below, this is quite different from the case of a weakly innovative industry, where

in many cases the strategic innovator does not share its location with other innova-

tors. Since for our parametrization the value of κ does not substantially influence the

strategic firm’s expected profit, the scenario with a strategic innovator in a strongly

innovative industry can be considered as a benchmark. Starting from this benchmark,

in what follows we explore how varying the industry environment and the type of the

strategic firm affects the optimal choice of the strategy parameter κ.

We start this investigation by considering the optimal location strategy of an inno-

vator in a weakly innovative industry environment (scenario INW). Figure 4(a) shows

that in such an environment the innovator’s expected profit is largest if its strategy

corresponds to a positive value of κ above a level of about 0.15. As can be seen in panel

(c), this strategy choice induces the firm to be in a single location. Furthermore, com-

paring the rate at which the strategic innovator switches between locations (see panel

(d)) shows a distinctive difference between the case of κ = 0 and the optimal choice

of κ = 0.15. Whereas in the former case the innovator switches regularly, in the latter

almost no switching occurs. Considering the instances in which the innovator shares a

location with imitators (Figure 3(b)), we see that the active switching behavior under

κ = 0 results in an average number of less than two imitators in the same region as

the strategic innovator, while the corresponding number for κ = 0.15 strongly increases
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Figure 3: Penalized spline estimations of the locational links between the strategic

innovator and imitators in a strongly (a) and weakly (b) innovative industry

to about three imitators. The discussion above explains why an innovator in such an

industry environment should systematically deviate from the NPV criterion and enter

a new location only if the NPV of doing so is above a strictly positive threshold. The

key observation is that by moving into a location the innovator triggers the future entry

of imitators (attracted by potential spillovers) into that location, which reduces the ac-

tual present value of moving compared to the NPV estimated under naive expectations

(i.e. under the current distribution of firms across locations). The firm should take this

systematic bias into account by setting a positive value of κ.

The bias incurred by a firm setting κ = 0 becomes evident by observing that, in

order to reduce the risk of being imitated, it keeps leaving regions populated by many

imitators (see again panel (d) of Figure 4). Whereas this behavior indeed induces rela-

tively high market profits (panel (b)), the resulting switching costs are so high that the

strategic firm’s profit is lower than under κ = 0.15, in which case the strategic innovator

refrains from switching between locations and accepts the risk of being imitated. The

key difference between this scenario and the one of a strongly innovative industry is

that, due to the much smaller number of imitators in the INS scenario, the bias of the

NPV under naive expectations is negligible and therefore there is no systematic reason

to correct for it. This is illustrated by the fact that almost no location switching occurs

even when κ = 0, corresponding to a strategy which aims at avoiding co-location with

imitators (see Figure 2(d)).17

We now turn to the analysis of the optimal location strategy of an imitator. In

17The scale used in panel (d) is identical across the four scenarios we consider in the section in order

to allow a better comparison of the size of switching rates.
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Figure 4: Penalized spline estimations of the expected discounted profits (a), market

profits (b), the average number of locations (c) and the switching rate (d) of the

strategic innovator in weakly innovative industry

Figure 5 we focus on the case of a strongly innovative industry (scenario IMS). Panel

(a) of Figure 5 clearly shows that for an imitator operating in a strongly innovative

environment it is optimal to choose κ = 0, which is in accordance with our benchmark

case. The key intuition why using the NPV criterion introduces no systematic bias in

the location decision is that in an industry mainly populated by innovative firms the

location decision of a single imitator does not have a systematic impact on the future

location choices of its competitors, having no substantial effect on their inwards and

outwards spillovers. Panel (c) shows that for this strategy choice the strategic imitator

on average operates in about two locations. Choosing a negative value of κ, which

leads to a more diversified location portfolio, would induce higher market profits for

the firm. However, the location and entry costs associated to such a broader portfolio
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Figure 5: Penalized spline estimations of the expected discounted profits (a), market

profits (b), the average number of locations (c) and the switching rate (d) of the

strategic imitator in strongly innovative industry

outweigh the profit gains in the market and therefore such a strategy is dominated by

κ = 0. Conversely, a positive value of κ induces a substantial loss in market profits

(see panel (b)), mainly due to a reduction in the firm’s locations and the associated

loss in imitation opportunities. As can be seen in panel (a) of Figure 6, an increase

from κ = 0 to κ = 0.1 is associated with a strong decrease in the number of instances

in which the strategic imitator shares a location with an innovator. This reduces the

opportunities for the strategic firm to quickly adopt successful innovations. Due to this

effect, following a strategy associated with a too small number of locations (positive κ)

is not optimal for the strategic imitator in this industry environment. As can be seen

in panel (d) of Figure 5, the optimal strategy of an imitator in this market environment

requires that it does not switch across locations. The fact that we consider a strongly
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Figure 6: Penalized spline estimations of the locational links between the strategic

imitator and innovators in a strongly (a) and weakly (b) innovative industry

innovative industry is crucial for the absence of location switching under κ = 0. In

this industry environment, innovators are spread across several locations such that

an imitator is likely to share a location with an innovator even if its own number of

locations is relatively small and it is not attempting to chase innovators by switching

locations.

Finally, Figure 7 focuses on the case of a weakly innovative industry (scenario

IMW). The optimal choice of the strategy parameter in this scenario is κ = −0.1,

which corresponds to a highly diversified location strategy inducing the firm to be

present in almost all available locations (see panel (c)). Intuitively, similar to the INW

scenario also here the NPV under naive expectations introduces a systematic bias. In

particular, the fact that a location is attractive for the strategic imitator implies that

it is also attractive for all other imitators in the industry. Hence, it should be expected

that the number of imitators in that region increases, which makes that region even

more attractive for the strategic imitator, since it increases the number of potential

sources of inwards spillovers. Taking this into account, it is optimal for the strategic

imitator to enter a location even if the NPV under naive expectations is negative.

Relative to the case of κ = 0, choosing a negative value of κ has several implications.

First, due to the larger number of locations in which the firm is active (4.4 vs. ≈ 1.5,

see panel (c)) the strategic firm has more opportunities for imitation. Figure 6(b)

illustrates the point by showing that the number of instances in which the strategic

imitator shares a location with an innovator grows considerably as κ is decreased from

the benchmark case to κ = −0.1. This results in higher market profits (Figure 7

(b)). However, the higher number of locations is also associated with larger location
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costs. As can be seen in panel (d) of Figure 7, relative to the case of κ = 0 setting

the strategy parameter to κ = −0.1 substantially reduces the instances in which the

strategic firm switches locations. This entails a strong reduction in switching costs.

Intuitively, using this strategy, the firm is highly diversified location-wise, such that –

regardless where innovators decide to locate – the firm has the possibility to imitate

through local spillovers. On the contrary, for the benchmark value κ = 0 the strategic

firm has only a small number of active locations, which is associated to a relatively high

switching rate. A small number of active locations, in turn, makes it necessary for the

strategic firm to ‘chase’ (by switching locations) the few innovators in the industry in

order to have opportunities for successful imitation. Similar arguments apply to even

more restrictive location strategies associated to a positive value of κ.

The key insight from our strategy analysis is that for a given parameter constellation

the optimal location strategy differs significantly between innovators and imitators, and

between the different industry environments in which they operate. To highlight that

this insight carries over beyond our benchmark parameter setting, in Appendix B we

compare the optimal values of κ across our four scenarios for different values of the

location costs, entry costs and number of locations. It turns out that the optimal value

of κ does not qualitatively change compared to the benchmark parameter setting. In

particular, for all considered parameter settings the optimal κ varies across the four

scenarios, confirming our key insight that the optimal location strategy depends on

firm and industry type.18

6 Concluding Remarks

We provide a theory of firms’ R&D location choices emphasizing the role of knowledge

flows as key determinants of that choice. We show that firms’ heterogeneity in terms of

the relevance of potential inwards and outwards spillovers systematically affects firms’

optimal location strategies in different industry environments, as well as the dynamics

of location patterns over time.

Our theory is able to replicate a number of stylized facts that have been documented

by the recent empirical literature, highlighting also the key underlying driving forces

that are associated to their emergence. Consistently with e.g. Alcacer and Chung

(2007), we find that technologically advanced firms distance themselves from locations

with significant industrial activity (preferring area characterized by high levels of aca-

18It should be noted that we restrict attention to parameter constellations where neither location

nor entry costs are too large, as this would obviously imply that all firms stick to only one location

regardless of their type and industry environment.
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Figure 7: Penalized spline estimations of the expected discounted profits (a), market

profits (b), the average number of locations (c) and the switching rate (d) of the

strategic imitator in weakly innovative industry
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demic activity), while less technologically advanced firms tend instead to favor such

locations. Furthermore, we obtain that technological laggards tend to operate in a

larger number of locations than more advanced firms, which resonates with the obser-

vation (see e.g. Leiponen and Helfat (2011)) that multi-location of R&D is associated

with imitative innovation activities rather than with new-to-the-market innovations.

Finally, in accordance with the evidence reported by Livanis and Lamin (2016) on the

exit rates of R&D facilities, we document the existence of a strong negative correla-

tion between the probability of an imitative firm leaving a location and the number

of other firms operating in that location, as well as a positive correlation between the

probability of a technological leader leaving a location and the number of competitors

operating there.

Besides being able to explain key stylized facts and the underlying driving forces,

our theoretical model also allows for a careful normative investigation of heterogeneous

firms’ location strategies in different environments. In this respect, the key managerial

implication of this paper is that there are situations in which a firm should be willing

to enter a location even though the net present value of doing so under the current

location pattern is negative (this is the case of an imitation oriented firm in a weakly

innovative industry), while there are other circumstances in which a firm should not

enter a location even for (slightly) positive net present values (an innovation oriented

firm in a weakly innovative industry).

The dynamic dimension of our analysis allows us to study how firms’ location

strategies shape the formation of industry agglomerations and their spatial dynamics.

In this respect, our study sheds light on how knowledge flows affect the decisions

of heterogeneous firms to join – or to escape – industry clusters. Furthermore, it

helps understanding the reasons why clusters move across locations over time and

why technologically advanced firms act as ‘anchors’ for the formation of new spatial

agglomerations within and across industries.

Several caveats to our results need to be acknowledged, which paves the way for

further research. On normative ground, our theory suggests that – in the presence

of strategic uncertainty that cannot be eliminated about competitors’ future location

choices – firms’ strategies, based on simple heuristics, may vary significantly depending

on firm and industry characteristics, often entailing a significant departure from the

application of a standard NPV rule. The merits of relying on heuristics to take decisions

in complex environments have been highlighted in the recent managerial literature

(see e.g. Joo et al. (2019) and Cui et al. (2018)). Notwithstanding, although the

simple heuristic decision rule we consider appears to be quite reasonable, alternative

mechanisms to handle fundamental uncertainty may be used by different firms, which
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calls for a deeper investigation of the robustness of our results to alternative heuristics

specifications.

Overall, this work enhances our understanding of the role of knowledge spillovers –

as a mechanism for accessing external knowledge – in driving firms’ location strategies.

As effectively noted by Alcacer and Chung (2007), while this channel is important for

some firms, other strategic mechanisms may turn out to be more effective in access-

ing external knowledge for other firms, the location choices of which are then likely

to be less affected by the presence of knowledge spillovers. Furthermore, the charac-

teristics of local labor markets, the availability of specialized suppliers, the quality of

infrastructures and more generally of the local environment are all factors that may

carry a large weight on firms’ location decisions. Exploring the relevance of strategic

mechanisms other than spillovers for accessing external knowledge, and investigating

the interplay between knowledge sourcing and other factors potentially affecting firms’

location strategies, are important avenues for future research.
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Appendix A: Derivation of Cournot Equilibrium Profits

The optimization problem of the representative consumer in period t is given by

maxxU(x, q) s.t.
∑
i∈Nt

pixi ≤ β,

where U(x, q) is defined in Equation (3). Formulating the first order conditions of the

associated Lagrangian immediately yields the inverse demand (4), with θ being the

multiplier of the budget constraint. Taking into account that
∑

i∈Nt
pixi = β holds for

the optimal consumption choice, we obtain

θ(xt, qt) =
β

α
∑

k∈Nt
xk,t −

∑
k∈Nt

x2k,t
q2k,t
− γ

∑
k∈Nt

∑
j∈Nt\{k}

xk,txj,t
qk,tqj,t

.

The quantity choice problem of firm i is given by

max
xi,t

π̃i,t := xi,tpi(xt, qt),
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where we have used that marginal costs are normalized to zero. This yields the first

order condition

∂π̃i,t
∂xi,t

= θ(xt, qt)

(
α− 2xi,t

q2i,t
− γ

∑
j∈Nt\{i}

xj,t
qi,tqj,t

)
+ ∂θ(xt,qt)

∂xi,t

(
α− xi,t

q2i,t
− γ

∑
j∈Nt\{i}

xj,t
qi,tqj,t

)
xi,t

= 0.

Taking into account that

∂θ(xt, qt)

∂xi,t
= −θ(xt, qt)

α− 2xi,t
q2i,t
− γ

∑
j∈Nt\{i}

xj,t
qi,tqj,t

α
∑

k∈Nt
xk,t −

∑
k∈Nt

x2k,t
q2k,t
− γ

∑
k∈Nt

∑
j∈Nt\{k}

xk,txj,t
qk,tqj,t

,

we obtain that

∂π̃i,t
∂xi,t

=

(
α− 2xi,t

q2i,t
− γ

∑
j∈Nt\{i}

xj,t
qi,tqj,t

)
θ(xt, qt)

1−
α−

xi,t

q2
i,t

−γ
∑

j∈Nt\{i}
xj,t

qi,tqj,t

α
∑

k∈Nt
xk,t−

∑
k∈Nt

x2
k,t

q2
k,t

−γ
∑

k∈Nt

∑
j∈Nt\{k}

xk,txj,t
qk,tqj,t


= 0.

Considering the second order condition shows that in order to maximize π̃i,t the

first bracket has to be zero, which gives the following best response function for firm i:

xi,t =
αq2

i,t

2
− γqi,t

2

∑
j∈Nt\{i}

xj,t
qi,tqj,t

.

Based on this best response, standard arguments give equilibrium quantities and prices;

i.e.

x∗i,t =
αqi,t

(
(2− γ)qi,t + γ

∑
j∈Nt\{i}(qi,t − qj,t)

)
(2− γ)(2 + γ(nt − 1))

,

p∗i,t = θ(x∗t , qt)
α
(

(2− γ)qi,t + γ
∑

j∈Nt\{i}(qi,t − qj,t)
)

qi,t(2− γ)(2 + γ(nt − 1))
= θ(x∗t , qt)

x∗i,t
q2
i,t

.

Hence, equilibrium profits are given by (5).

Appendix B: Robustness

In this Appendix, we check the robustness of our findings with respect to variations in

key parameters. In particular, we focus on those parameters that most directly affect

the location choices of firms, namely the number of available locations as well as the

costs of entering (ϑen) and operating (ϑloc) in a location.
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Figure 8: Penalized spline estimations of the strategic firm’s expected discounted profits

for a scenario with |L| = 10 locations in cases of a strategic innovator in a strongly (a)

and weakly (b) innovative industry as well as for a strategic imitator in a strongly (c)

and weakly (d) innovative industry
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Number of Locations

All results in this paper have been obtained for an industry in which the number of

available locations is |L| = 5. As it turns out, in such a scenario there are cases in

which all locations are inhabited by at least one firm, so that an entering or moving

firm does not have the option to choose an empty location. In order to assess whether

our findings about the firms’ optimal strategy are affected by this property, we also

carry out simulations for |L| = 10. Our simulations show that for such a setting there

is always at least one empty location available for a switching or entering firm. Figures

8 and 9 depict the expected total profits and the switching rate, respectively, of the

strategic firm for κ ∈ [−0.15, 0.3] in all the four cases INS, INW, IMS and IMW. It

turns out that our characterization of the optimal location strategy is fully robust for

the first three of these cases. Only for the scenario of an imitative strategic firm in

a weakly innovative industry (IMW) we obtain that the optimal value of the strategy

parameter changes from κ = −0.1 to κ = 0.15. Not surprisingly, if the number of

available locations becomes too large, a strategy aiming at ‘covering all bases’, i.e.

being present in all locations where innovators might move to, becomes too costly.

Hence, a strategy focusing on one location and following innovators if they move (see

panel (d) in Figure 9) becomes the optimal choice of the strategic imitator. In any case,

these results highlight that the optimal value of κ for the strategic innovator differs

significantly between a strongly and weakly innovative industry (panel (a) versus panel

(b) of Figure 8) and also that in a strongly innovative industry the optimal location

strategy of an innovator is significantly different from that of an imitator (panel (a)

versus panel (c)).

Location and Entry Costs

There are two types of direct costs related to the R&D location choice of firms. On

the one hand, the firm has to pay recurring location costs ϑloc for every location it

operates in. On the other hand, there are entry costs ϑen occurring either when the

firm enters an additional location, or switches between locations. Given that both types

of costs are taken into account by the firm in the estimation of the net present values of

alternative location patterns, it should be clear that these costs can have considerable

effects on the outcome of firm’s decision making.

In order to demonstrate that the qualitative findings of our strategy analysis are

robust with respect to a variation of these costs within a reasonable range around their

default values (see Table 1), we report two additional robustness checks in each of

which we show the dependence of a firm’s expected discounted profit from the strategy

41



−0.1 0.0 0.1 0.2 0.3

0.
00

0
0.

00
5

0.
01

0
0.

01
5

κ

S
w

itc
hi

ng
 R

at
e

−0.1 0.0 0.1 0.2 0.3
0.

00
0

0.
00

5
0.

01
0

0.
01

5

κ

S
w

itc
hi

ng
 R

at
e

(a) (b)

−0.1 0.0 0.1 0.2 0.3

0.
00

0
0.

00
5

0.
01

0
0.

01
5

κ

S
w

itc
hi

ng
 R

at
e

−0.1 0.0 0.1 0.2 0.3

0.
00

0
0.

00
5

0.
01

0
0.

01
5

κ

S
w

itc
hi

ng
 R

at
e

(c) (d)

Figure 9: Penalized spline estimations of the strategic firm’s switching rate for a sce-

nario with |L| = 10 locations in cases of a strategic innovator in a strongly (a) and

weakly (b) innovative industry as well as for a strategic imitator in a strongly (c) and

weakly (d) innovative industry
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parameter κ under different levels of the corresponding cost parameter. In particular,

we consider an interval [0.0075, 0.0125] for the location costs ϑloc, whereas we focus on

the interval [2.25, 3.75] for the entering costs ϑen. In both cases, this corresponds to

a significant variation of 25% in each direction from the default values that we obtain

from our calibration (ϑloc = 0.01, ϑen = 3.0).
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Figure 10: Penalized spline estimations of the strategic firm’s total profit a scenario with

locations costs ϑloc = 0.0075 (black), ϑloc = 0.01 (red, default value) and ϑloc = 0.0125

(green) in cases of a strategic innovator in a strongly (a) and weakly (b) innovative

industry as well as for a strategic imitator in a strongly (c) and weakly (d) innovative

industry

In Figure 10, we show the results of the robustness check for alternative specifi-

cations of location costs. Not surprisingly, a change in location costs induces level

effects on the profitability of the strategy profiles, which are more pronounced for

κ < 0. Nevertheless, the characterization of the optimal strategy profiles does not
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change qualitatively within the considered interval. In particular, for an innovator in

a strongly innovative industry, no clear normative statements about the optimal value

of κ can be made, which is consistent with our observation for the baseline case (panel

(a)). In the same environment, instead, using κ = 0 is optimal for an imitator, again

consistently with our baseline finding (panel (c)). In a weakly innovative industry, the

innovator should always choose a positive κ value (panel (b)), whereas for an imitator

in such an environment a negative value of κ is optimal under all considered parameter

values (panel (d)).
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Figure 11: Penalized spline estimations of the strategic firm’s total profit a scenario

with entering costs ϑen = 2.25 (black), ϑen = 3.0 (red, default value) and ϑen = 3.75

(green) in cases of a strategic innovator in a strongly (a) and weakly (b) innovative

industry as well as for a strategic imitator in a strongly (c) and weakly (d) innovative

industry

A similar conclusion is confirmed by Figure 11 considering different values of entry
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costs ϑen. Again, a change of this parameter induces level effects, but the characteristics

of the firm’s optimal strategy qualitatively do not change across the considered values

of entry costs. The only exception in this respect is the case of a strategic innovator in

a strongly innovative industry, where for a large entry cost negative values of κ can be

ruled out as the optimal choice. Nonetheless, consistently with our baseline analysis,

in this scenario there is still a whole range of κ values maximizing the expected profit

of the strategic firm.
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