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Abstract

We reconsider de Marti and Zenou (2017) model of friendship network forma-

tion where individuals belong to two different communities. Benefits from direct

and indirect connections decay with distance while costs of forming links depend on

community memberships. Individuals are now either farsighted or myopic when de-

ciding about the friendship links they want to form. When all individuals are myopic

many ineffi cient friendship networks (e.g. complete segregation) can arise. When

the larger (smaller) community is farsighted while the smaller (larger) community is

myopic, the friendship network where the myopic community is assimilated into the

farsighted community is the unique stable network when inter-community costs are

large. In fact, farsightedness helps the society to avoid ending up segregated. Once

inter-community costs are small enough, the complete integration network become

stable. Finally, when all individuals are farsighted, the friendship network where

the smaller community ends up being assimilated into the dominant community is

likely to arise.
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1 Introduction

Social networks or friendship networks are important in obtaining information on goods

and services, like product information or information about job opportunities. Individuals

are often regrouped into communities based on their ethnicity, religion, income, education,

etc. (see e.g. de Marti and Zenou, 2017; Patacchini and Zenou, 2016). Beside belonging

to different communities, individuals often differ in their degree of farsightedness, i.e.,

their ability to forecast how others will react to the decisions they take. Indeed, recent

experiments on network formation provide evidence in favor of a mixed population con-

sisting of both myopic and (limited) farsighted individuals (see Kirchsteiger, Mantovani,

Mauleon and Vannetelbosch, 2016; Teteryatnikova and Tremewan, 2020). The degree of

farsightedness or the depth of reasoning are likely to be correlated with other relevant

attributes such as education, income, age, etc. (see Mauersberger and Nagel, 2018).

The aim of this paper is to provide a theoretical study of how different degrees of

farsightedness will affect the formation of friendship relationships when individuals can

belong to various communities.1 In particular, we are interested in addressing the following

set of questions. What are the friendship network structures that may endogenously

arise once individuals belonging to two different communities can be either myopic or

farsighted in forming links? When do we observe integration, segregation or (partial)

assimilation? Does farsightedness help to bridge communities and to more integrated

societies? Are farsighted individuals more likely to be linked to others who have different

characteristics? How might the network structure change if the dominant community is

farsighted while the other one is myopic? Do myopic individuals end up assimilated to the

dominant community? Are individual incentives to link adequate from a social welfare

point of view? Does it improve effi ciency if some individuals become farsighted? And if

yes, whom?

To answer these questions we reconsider de Marti and Zenou (2017) model of network

formation where individuals belong to two different communities. Communities may be

defined along social categories such as ethnicity, religion, education, income, etc. In

contrast to de Marti and Zenou (2017) where all individuals were myopic, we now allow

the possibility of having a mixed population composed of both myopic and farsighted

individuals. Myopic or farsighted individuals decide with whom they want to form a link,

according to a utility function that weights the costs and benefits of each connection.

Farsighted individuals are able to anticipate that once they add or delete some links,

other individuals could add or delete links afterwards. Benefits of a friendship connection

decrease with distance in the network, while the cost of a link depends on the type of

individuals involved. Two individuals from the same community face a low linking cost,

1Jackson (2008) and Goyal (2007) provide a comprehensive introduction to the theory of social and

economic networks. Mauleon and Vannetelbosch (2016) give an overview of the solution concepts for

solving network formation games. In Bramoullé, Galeotti and Rogers (2016), one can find the recent

developments on the economics of networks.
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while the cost of forming a friendship relationship between two individuals from different

communities decreases with the rate of exposure of each of them to the other community.

We adopt the notion of myopic-farsighted stable set to determine the friendship net-

works that emerge when some individuals are myopic while others are farsighted.2 A

myopic-farsighted stable set is the set of networks satisfying internal and external sta-

bility with respect to the notion of myopic-farsighted improving path. That is, a set of

networks is a myopic- farsighted stable set if there is no myopic-farsighted improving path

between networks within the set and there is a myopic-farsighted improving path from

any network outside the set to some network within the set. A myopic-farsighted improv-

ing path is simply a sequence of networks that can emerge when farsighted individuals

form or delete links based on the improvement the end network offers relative to the cur-

rent network while myopic individuals form or delete links based on the improvement the

resulting network offers relative to the current network.

When all individuals are myopic, de Marti and Zenou (2017) already show that many

friendship networks can be stable. In the case of low intra-community costs, the complete

integration is stable when inter-community costs are suffi ciently low. For higher inter-

community costs, the complete segregation becomes stable. They also point out that

some asymmetric network configurations can be stable. For instance, the network in

which both communities are fully intra-connected and where there is only one bridge link

can be stabilized. In addition, we show that friendship networks where one community is

fully or partially assimilated to the other community can also emerge in the long run.

What happens when the population is composed of both myopic and farsighted individ-

uals? Suppose first that all members of one community are farsighted while all members of

the other community are myopic. We show that, in the case of low intra-community costs,

there is a single friendship network that emerges in the long run when inter-community

costs are large enough: the friendship network where the myopic community ends up be-

ing assimilated into the farsighted community. Precisely, a singleton set consisting of the

network where the myopic community is assimilated into the farsighted community is the

unique myopic-farsighted stable set. Farsighted individuals are able destabilize the com-

plete segregated network by luring the myopic individuals with the prospect of forming

a friendship network where the farsighted community is fully assimilated into the myopic

community. From such friendship network, farsighted individuals are able to induce a

switch towards the opposite fully assimilated network, the friendship network where the

myopic community is fully assimilated into the farsighted community, where they achieve

their best outcome. When inter-community costs are smaller, the complete integration

network becomes again stable whatever the number of farsighted and myopic individuals

within the population.

2Herings, Mauleon and Vannetelbosch (2020) were first to define the myopic-farsighted stable set

for two-sided matching problems. This notion is extended to R&D network formation with pairwise

deviations in Mauleon, Sempere-Monerris and Vannetelbosch (2020) and to general network formation

problems in Luo, Mauleon and Vannetelbosch (2020).
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One may wonder if assimilated friendship networks are still stable once individuals

from the myopic community become farsighted. We find that, when all the population is

farsighted and intra-community costs are low, the friendship network where the smaller

community is fully assimilated into the larger or dominant community is likely to emerge in

the long run whatever the inter-community costs. However, the opposite fully assimilated

network and the complete segregation network are very unlikely to arise. In addition, the

complete segregation network is even Pareto-dominated by the friendship network where

the smaller community is fully assimilated into the dominant community. In fact, in terms

of effi ciency, either the complete integration network or the network where the smaller

community is fully assimilated into the dominant one are the optimal network structures

when intra-community costs are low. Thus, for recovering effi ciency, it is better to make

individuals belonging to the dominant community farsighted instead of individuals of the

smaller community.

In the case of intermediate intra-community costs, many friendship networks are again

stable when all individuals are myopic. However, we show that if there are enough far-

sighted individuals, independently to which community they belong, then a star network

with a myopic in the center will arise. In addition, star networks turn to be the effi cient

networks for intermediate intra-community costs. Hence, a mixed population of farsighted

and myopic individuals solve the tension between stability and effi ciency.

We now turn to the related literature. There is an extensive literature using network

models to explain the fact that individuals are more likely to be linked to individuals

who have similar characteristics. Currarini, Jackson and Pin (2009) develop a dynamic

random matching model with a population formed by groups of different sizes and show

that segregation in social networks results from the decisions of the individuals involved

and/or from the ways in which individuals meet and interact. In equilibrium, individu-

als’behavior is totally homogeneous within the same group of individuals. Bramoullé,

Currarini, Jackson, Pin and Rogers (2012) develop a model of dynamic matching with

both random meetings and network-based search. They show that majority and minority

groups have different patterns of interactions and that relative homophily in the network

is strongest when groups have equal size, and vanishes as groups have increasingly unequal

sizes.3

Despite strong empirical evidence, few models of network formation with differentiated

communities have studied the impact of social networks on the long-run integration out-

come of minorities. Jackson and Rogers (2005) extend the Jackson and Wolinsky (1996)’s

connection model by including two communities and assuming that the cost of linking

two individuals from different communities is exogenous and independent of the behavior

of the two individuals involved in the link. Johnson and Gilles (2000) add a geographical

3Mele (2017) proposes a dynamic model of network formation that combines strategic and random

networks features. In each period an individual meets another individual and decides whether to form a

new link, keep an existing link or do nothing. He shows that the model converges to a unique stationary

equilibrium distribution over networks.
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dimension to Jackson and Wolinsky (1996)’s connection model assuming that the cost of

a link is proportional to the geographical distance between two individuals. As already

mentioned, de Marti and Zenou (2017) model is a variation of the connection model where

the cost of a link is endogenous and depends on the neighborhood structure of the two

individuals involved in the link.

We go further the related literature by considering the impact of a mixed population

along two dimensions (community membership and degree of farsightedness) on the stabil-

ity of friendship networks. That is, we analyze how the presence of farsighted individuals

can affect the long-run integration outcome and under which circumstances this can lead

either to a segregated society or to a society where one community is fully or partially

assimilated into the other one. By doing so, we are the first to provide a theoretical

network formation model that stabilizes in the long-run the effi cient network structure

where the smaller community ends up fully assimilated into the larger community.4

Another strand of the literature studies the role of social networks in the assimilation

of immigrants, a hot debate in the United States and in Europe. There is strong evidence

showing that family, peers and communities affect assimilation decisions (see e.g. Bisin,

Patacchini, Verdier and Zenou, 2016). In particular, there may be a conflict between

an individual’s assimilation choice and that of her peers and between an individual’s

assimilation choice and that of her family and community. Verdier and Zenou (2017) study

the role of the immigrant network in the assimilation process of ethnic minorities. They

show that, in an exogenous network, the more central minority individuals are located in

the social network, the more they assimilate to the majority culture. By endogenizing

the network structure, they show when the ethnic minority will integrate or not into the

majority group.

The paper is organized as follows. In Section 2 we present de Marti and Zenou (2017)

model of friendship networks with two communities and we look at which networks are

likely to arise when all individuals are myopic. In Section 3 we introduce the concept of

myopic-farsighted stable sets. In Section 4 we provide a characterization of the myopic-

farsighted stable sets when intra-community costs are low. In Section 5 we consider the

case where intra-community costs are intermediate. Finally, in Section 6 we conclude.

2 Friendship networks with two communities

We consider de Marti and Zenou (2017) model of friendship networks where individuals

belong to two different communities. Individuals benefit from direct and indirect connec-

4Using data from the German Socio-Economic panel for the period 1996 to 2011, Facchini, Patacchini

and Steinhardt (2015) find that first generation migrants who have a German friend are more similar

to German natives than migrants who do not. In addition, the educational achievement is positively

related to the likelihood of forming friendships with majority group members. Similarly, from data of the

European Community Household Panel (1994-2001), de Palo, Faini and Venturini (2007) find that more

educated migrants tend to socialize more intensively with the majority community.
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tions to others, which can be interpreted as positive externalities. These benefits decay

with distance between individuals and the cost of forming links may depend on commu-

nity memberships. The novelty is that individuals can now be either farsighted or myopic

when deciding about the friendship links they want to form. In de Marti and Zenou

(2017) all individuals were supposed to be myopic.

The set of individuals is denoted by N = NM ∪ NF , where NM is the set of myopic

individuals and NF is the set of farsighted individuals. Let n be the total number of

individuals and nM ≥ 0 (nF = n − nM ≥ 0) be the number of myopic (farsighted)

individuals. Moreover, the population is divided into two communities N = NB ∪ NG,

where NB is the blue community and NG is the green community. Each individual belongs

to one of the two communities and the type of individual i is denoted as τ(i) ∈
{
NB, NG

}
.

We have n = nB+nG, where nB and nG denote, respectively, the number ofNB individuals

and the number of NG individuals in the population. Without loss of generality, the green

community is the largest one: nB ≤ nG.

A friendship network g is a list of which pairs of individuals are linked to each other

and ij ∈ g indicates that i and j are linked under g. The complete network on the set of
individuals S ⊆ N is denoted by gS and is equal to the set of all subsets of S of size 2.

It follows in particular that the empty network is denoted by g∅. The set of all possible

networks on N is denoted by G and consists of all subsets of gN . The network obtained
by adding link ij to an existing network g is denoted g + ij and the network that results

from deleting link ij from an existing network g is denoted g − ij. Let N(g) = {i |there
is j such that ij ∈ g} be the set of individuals who have at least one link in the network
g. Let Ni(g) = {j ∈ N | ij ∈ g} be the set of neighbors (or friends) of individual i in
g.5 Let ni(g) = #(Ni(g)) be the number of neighbors (or friends) of individual i in g.

A path in a network g between i and j is a sequence of individuals i1, . . . , iK such that

ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i and iK = j. A network g is connected

if for all i ∈ N and j ∈ N \ {i}, there exists a path in g connecting i and j. A nonempty
subnetwork h ⊆ g is a component of g, if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists
a path in h connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h.
A star network is a network such that there exists some individual i (the center) who is

linked to every other individual j 6= i (the peripherals) and that contains no other links

(i.e. g is such that Ni(g) = N \ {i} and Nj(g) = {i} for all j ∈ N \ {i}).
A network utility function (or payoff function) is a mapping Ui : G → R that assigns

to each network g a utility Ui(g) for each individual i ∈ N . A network g ∈ G is strongly
effi cient if

∑
i∈N Ui(g) ≥

∑
i∈N Ui(g

′) for all g′ ∈ G. Preferences are given by

Ui(g) =
∑
j 6=i

δt(i,j) −
∑

j∈Ni(g)

cij(g),

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =∞
5Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion. Finally,

# will refer to the notion of cardinality.
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if there is no path between i and j), 0 < δ < 1 is the benefit from a connection that

decreases with the distance of the relationship,6 and cij(g) > 0 is the cost for individual i

of maintaining a direct link with j. The cost of forming one link may vary as a function

of the type of individuals connected by such link.

Definition 1 (de Marti and Zenou, 2017). Given a network g, the rate of exposure of
individual i to their own community τ(i) is

e
τ(i)
i (g) =

{
n
τ(i)
i (g)/(ni(g)− 1) if 0 < n

τ(i)
i (g) < ni(g)

0 if nτ(i)i (g) = 0
(1)

where nτ(i)i (g) is the number of i’s same-type friends in network g while ni(g) is the total

number of i’s friends in network g.

Let c and C be strictly positive parameters, c > 0 and C > 0. The cost for individual

i of maintaining a link with j, cij(g), depends on whether i and j belong or not to the

same community:

cij(g) =

{
c if τ(i) = τ(j)

c+ e
τ(i)
i (g) · eτ(j)j (g) · C if τ(i) 6= τ(j)

.

Such cost function assumes that it is less costly to interact with someone of the same

type (intra-community cost) than with someone of a different type (inter-community

cost). Notice that C is not present in the cost of a link between individuals of the

same community. But, C becomes an additional cost when two individuals from different

communities, having links with individuals of their own community, form a link between

them. For instance, if a green individual has only green friends, then it will be more costly

for her to interact with a blue individual that has mostly blue friends. However, the more

similar the friendship composition of two individuals of different types, the easier it is

for them to interact. If at least i or j has no friends of the same type (i.e., eτ(i)i = 0 or

e
τ(j)
j = 0), then it is equally costly for them to interact with someone of the opposite type

as with someone of the same type (i.e., the cost is c in both cases).7 In Figure 1 we depict

a friendship network among seven individuals and two communities (NG = {1, 2, 3, 4},
NB = {5, 6, 7}) with a bridge link between both communities. Green individuals are
represented by solid circles while blue individuals are represented by circles. For instance,

green individual 4’s payoff is equal to 4δ + 2δ2 − 4c − C since eτ(4)4 = 3/(4 − 1) = 1 and

e
τ(7)
7 = 2/(3− 1) = 1.

We now describe some prominent network configurations in the case of friendship

networks with communities. Let gassi,green denote the network where all members of the

6It is similar to the connections model introduced by Jackson and Wolinsky (1996).
7In the definition of the rate of exposure (see the expression (1)), we subtract 1 in the denominator

because, when computing the cost of a given bridge link between communities, this bridge link is not

included in the computation of the cost. What is relevant for the cost is the rate of exposure according

to the rest of the connections of each of the two individuals involved in the bridge link.
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Figure 1: A bridge link between both communities. Greens are represented by solid circles

while blues are represented by circles.

blue community are fully assimilated to the dominant (or larger) green community. That

is, each green individual is linked to all other (green and blue) individuals while each blue

individual is only linked to all green individuals. Formally, gassi,green = gN
G ∪ {ij | i ∈

NG, j ∈ NB}. In Figure 2 we depict gassi,green for NG = {1, 2, 3, 4} and NB = {5, 6}.
Similarly, let gassi,blue denote the network where all members of the green community are

fully assimilated to the smaller blue community. That is, each blue individual is linked

to all other (green and blue) individuals while each green individual is only linked to

all blue individuals. Formally, gassi,blue = gN
B ∪ {ij | i ∈ NB, j ∈ NG}. In Figure 3

we depict gassi,blue for NG = {1, 2, 3, 4} and NB = {5, 6}. Let gint denote the complete
integration network where both communities are fully intra-connected and fully inter-

connected: gint = gN and is depicted in Figure 4. Let gseg denote the complete segregation

network where both communities are fully intra-connected but isolated of each other:

gseg = gN
G ∪ gNB

and is depicted in Figure 5.
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Figure 2: The blue community is fully assimilated within the green community.

de Marti and Zenou (2017) adopt the notion of pairwise stability, introduced by Jack-

son and Wolinsky (1996), to study the networks that will be formed at equilibrium. A
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Figure 3: The green community is fully assimilated within the blue community.
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Figure 4: Both communities are fully integrated.
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Figure 5: Both communities are segregated.
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network is pairwise stable if no individual benefits from deleting a link and no two indi-

viduals benefit from adding a link between them. Formally, a network g ∈ G is pairwise
stable if (i) for all ij ∈ g, Ui(g) ≥ Ui(g − ij) and Uj(g) ≥ Uj(g − ij), (ii) for all ij /∈ g, if
Ui(g) < Ui(g + ij) then Uj(g) > Uj(g + ij). Let P be the set of pairwise stable networks.

Pairwise stability presumes that individuals are myopic: they do not anticipate that other

individuals may react to their changes. Denote ∆ ≡ δ − δ2 − c. De Marti and Zenou

(2017) find necessary and suffi cient conditions for the stability of the complete integration

(segregation) network.

Proposition 1 (de Marti and Zenou, 2017). Assume low intra-community costs, 0 < ∆

or c < δ − δ2.

(i) The complete integration network gint = gN is pairwise stable if and only if

C <
(n− 2)2(n− 3)

nG(nG − 1)2
∆;

(ii) The complete segregation network gseg = gN
G ∪ gNB

is pairwise stable 8 if and only if

C > ∆ + nB · δ2.

We now show that friendship networks where one community is fully or partially

assimilated to the other community can also emerge in the long run when intra-community

costs are low. In Figure 6 (7) we depict a network where one blue (green) individual is

assimilated to the green (blue) community, while the rest of blue (green) individuals are

isolated. All the proofs not in the main text can be found in the appendix.

Proposition 2. Assume low intra-community costs, 0 < ∆ or c < δ − δ2.

(i) The network gassi,green = gN
G ∪ {ij | i ∈ NG, j ∈ NB} where all the blue community

is fully assimilated to the green community is pairwise stable if and only if

C >
(n− 2)

(nG − 1)
∆;

(ii) The network gassi,blue = gN
B ∪ {ij | i ∈ NB, j ∈ NG} where all the green community

is fully assimilated to the blue community is pairwise stable if and only if

C >
(n− 2)

(nB − 1)
∆;

8Notice that there is a typo in de Marti and Zenou’s original condition: C > ∆ + nGδ2 has to be

replaced by C > ∆ + nBδ2.
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(iii) Take any NB1  NB such that 1 ≤ nB1 ≤ nB − 2. The network gpassi,green =

gN
G∪gNB\NB1 ∪{ij | i ∈ NG, j ∈ NB1} where nB1 blue individuals are assimilated to

the green individuals and all other blue individuals are intra-connected and segregated

is pairwise stable if and only if

C >
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
;

(iv) Take any NG1  NG such that 1 ≤ nG1 ≤ nG − 2. The network gpassi,blue = gN
B ∪

gN
G\NG1 ∪{ij | i ∈ NB, j ∈ NG1} where nG1 green individuals are assimilated to the

blue individuals and all other green individuals are intra-connected and segregated is

pairwise stable if and only if

C >

{
Ĉ1 if nG1 ≤ 1

2
(nG − nB);

Ĉ2 if nG1 > 1
2
(nG − nB);

where

Ĉ1 = max

{
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nB + nG1)δ2

)
,
(nB + nG1 − 2)

(nB − 1)

(
∆ + (nG − nG1)δ2

)}
;

Ĉ2 =
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nG − nG1)δ2

)
.
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Figure 6: One blue individual is assimilated to the green community while the rest of blue

individuals are segregated.

Proposition 2 of de Marti and Zenou (2017) points out that if intra-community costs

are low, some asymmetric network configurations can also be pairwise stable: (i) the

network in which both communities are fully intra-connected and where there is only

one bridge link (see Figure 1), (ii) the network in which both communities are fully

intra-connected, where each blue individual has one and only one bridge link, and where

each green individual has at most one bridge link, and (iii) the network in which both

communities are fully intra-connected and with a unique blue individual connected with
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Figure 7: One green individual is assimilated to the blue community while the other green

individuals are segregated.

all green individuals. In the appendix we show that even more friendship networks can

be pairwise stable. For instance, the network in which both communities are fully intra-

connected and in which one green individual is linked to all blue individuals.

In terms of strong effi ciency considerations, one might wonder which of the pairwise

stable networks is better from a social point of view. de Marti and Zenou (2017) only

compare the effi ciency of the complete integrated network and the complete segregated

network, and they conclude that, depending on the size of relative communities, one

cannot plead for integrated or segregated socialization patterns a priori. We next compare

in terms of strong effi ciency the complete integrated network, the complete segregated

network, and the networks with full or partial assimilation.

Proposition 3. Assume low intra-community costs, 0 < ∆ or c < δ − δ2. Let

C∗ =
(n− 2)2

2nG(nG − 1)
∆.

(i) If C < C∗, the complete integrated network gint is strongly effi cient.

(ii) If C > C∗, the network gassi,green in which all blue individuals are fully assimilated

into the dominant green community and all green individuals are fully inter- and

intra-connected is strongly effi cient.

(iii) The complete segregated network gseg is never strongly effi cient for any value of C.

Thus, contrary to de Marti and Zenou (2017), we obtain that the complete segregated

network is never strongly effi cient. Only the complete integrated network and the network

in which the blue individuals are fully assimilated into the dominant green community are

strongly effi cient. Indeed, the effi ciency of one or the other network depends on C, which

affects the exposure effect that the formation of a new link has on the exposure rates

of the individuals involved in it. The formation of a link between two individuals from
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different communities (the same community), has a positive (negative) exposure effect

for the individuals involved in it because the decrease (increase) in the rate of exposure

of each of these individuals to their own community will reduce (increase) their inter-

community costs that are proportional to C. When C is small enough (close to 0), the

difference between the inter-community and the intra-community costs is negligible and

then one can consider that the entire population belong to only one community. When this

is the case, Proposition 2 in Jackson and Wolinsky (1996) is applicable and the complete

integrated network is both pairwise stable and strongly effi cient. When C increases, the

inter-community costs might overcome the benefits derived from connecting to the other

community. When this is the case, it becomes preferable to avoid the inter-community

costs, making effi cient the network in which the blue individuals (without any link to

other blue individuals) are fully assimilated into the dominant green community.

Proposition 3 and Proposition 5 in de Marti and Zenou (2017) provide conditions for

the stability of some type of networks when intra-community costs are intermediate (i.e.

δ − δ2 < c < δ − δ3 or δ − δ2 < c < δ): (i) the bipartite network in which all green

individuals are linked to all blue individuals, and in which all blue individuals are linked

to all green individual, (ii) the network with two disconnected star-shaped communities,

(iii) the network where the star-shaped communities are connected through their central

individuals, (iv) the network where the star-shaped communities are connected through

their peripheral individuals, and (v) the network where the star-shaped communities

are connected through their central individuals and through their peripheral individuals.

However, all those networks are not effi cient. In fact, a star network encompassing all

individuals is pairwise stable and is strongly effi cient.

Proposition 4. Assume intermediate intra-community costs, δ − δ2 < c < δ. A star

network is both pairwise stable and strongly effi cient.

Up to now it has been assumed that all individuals were myopic in the friendship

network formation. We next allow the population to include not only myopic individuals

but also farsighted ones. Farsighted individuals are able to anticipate that once they add

or delete some links, other individuals could add or delete links afterwards.

3 Myopic-farsighted stable sets

We adopt the notion of myopic-farsighted stable set introduced by Herings, Mauleon and

Vannetelbosch (2020) to determine the networks that are stable when some individuals are

myopic while others are farsighted.9 A set of networks G is said to be a myopic-farsighted

9See Chwe (1994), Herings, Mauleon and Vannetelbosch (2009), Mauleon, Vannetelbosch and Vergote

(2011), Ray and Vohra (2015, 2019), Roketskiy (2018) for definitions of the farsighted stable set when

individuals are farsighted. Alternative notions of farsightedness for network formation are suggested by

Dutta, Ghosal and Ray (2005), Dutta and Vohra (2017), Herings, Mauleon and Vannetelbosch (2019),

Page, Wooders and Kamat (2005), Page and Wooders (2009) among others.
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stable set if it satisfies the following two types of stability. Internal stability: No network

in G is dominated by any other network in G. External stability: Every network not in G

is dominated by some network in G. A network g′ is said to be dominated by a network

g if there is a myopic-farsighted improving path from g′ to g.

A myopic-farsighted improving path is a sequence of distinct networks that can emerge

when farsighted individuals form or delete links based on the improvement the end network

offers relative to the current network while myopic individuals form or delete links based

on the improvement the resulting network offers relative to the current network. Since we

only allow for pairwise deviations, each network in the sequence differs from the previous

one in that either a new link is formed between two individuals or an existing link is

deleted. If a link is deleted, then it must be that either a myopic individual prefers the

resulting network to the current network or a farsighted individual prefers the end network

to the current network. If a link is added between some myopic individual i and some

farsighted individual j, then the myopic individual i must prefer the resulting network to

the current network and the farsighted individual j must prefer the end network to the

current network.10

Definition 2. A myopic-farsighted improving path from a network g to a network g′ is a
finite sequence of distinct networks g1, . . . , gK with g1 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk−ij for some ij such that Ui(gk+1) > Ui(gk) and i ∈ NM or Uj(gK) > Uj(gk)

and j ∈ NF ; or

(ii) gk+1 = gk + ij for some ij such that Ui(gk+1) > Ui(gk) and Uj(gk+1) ≥ Uj(gk) if i, j ∈
NM , or Ui(gK) > Ui(gk) and Uj(gK) ≥ Uj(gk) if i, j ∈ NF , or Ui(gk+1) ≥ Ui(gk) and

Uj(gK) ≥ Uj(gk) (with one inequality holding strictly) if i ∈ NM , j ∈ NF .

If there exists a myopic-farsighted improving path from a network g to a network g′,

then we write g → g′. The set of all networks that can be reached from a network g ∈ G by
a myopic-farsighted improving path is denoted by φ(g), φ(g) = {g′ ∈ G | g → g′}. When
all individuals are myopic, our notion of myopic-farsighted improving path reverts to

Jackson and Watts (2002) notion of improving path. When all individuals are farsighted,

our notion of myopic-farsighted improving path reverts to Jackson (2008) and Herings,

Mauleon and Vannetelbosch (2009) notion of farsighted improving path. A set of net-

works G is a myopic-farsighted stable set if the following two conditions hold. Internal

stability: for any two networks g and g′ in the myopic-farsighted stable set G there is no

myopic-farsighted improving path from g to g′ (and vice versa). External stability: for

10Along a myopic-farsighted improving path, myopic players do not care whether other players are

myopic or farsighted. They behave as if all players are myopic and they compare their resulting network’s

payoff to their current network’s payoff for taking a decision. However, farsighted players know exactly

who is farsighted and who is myopic and they compare their end network’s payoffto their current network’s

payoff for taking a decision.
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every network g outside the myopic-farsighted stable set G there is a myopic-farsighted

improving path leading to some network g′ in the myopic-farsighted stable set G (i.e.

there is g′ ∈ G such that g → g′).

Definition 3. A set of networks G ⊆ G is a myopic-farsighted stable set if: (IS) for every
g, g′ ∈ G, it holds that g′ /∈ φ(g); and (ES) for every g ∈ G\G, it holds that φ(g)∩G 6= ∅.

When all individuals are farsighted, the myopic-farsighted stable set is simply the

farsighted stable set as defined in Herings, Mauleon and Vannetelbosch (2009) or Ray

and Vohra (2015). When all individuals are myopic, the myopic-farsighted stable set boils

down to the pairwise CP vNM set as defined in Herings, Mauleon, and Vannetelbosch

(2017) for two-sided matching problems.11

When all individuals are myopic, Jackson and Watts (2002) define the notions of cycle

and closed cycle. A set of networks C, form a cycle if for any g ∈ C and g′ ∈ C there
exists an improving path connecting g to g′. A cycle C is a closed cycle if no network
in C lies on an improving path leading to a network that is not in C. Luo, Mauleon and
Vannetelbosch (2020) characterize the myopic-farsighted stable set when all individuals

are myopic (i.e. N = NM): a set of networks is a myopic-farsighted stable set if and only

if it consists of all pairwise stable networks and one network from each closed cycle.

Similar to pairwise stability, one may alternatively look for networks that are im-

mune to deviations by myopic and farsighted individuals. A network g ∈ G is myopic-
farsightedly pairwise stable if φ(g) = ∅. The set of myopic-farsightedly pairwise stable
networks is denoted by PMF . When N = NF it reverts to Jackson (2008) set of farsight-

edly pairwise stable networks. Since PMF ⊆ P , it is not surprising that the set PMF is

often empty.

4 Low intra-community costs

Suppose now that the population of individuals is mixed in terms of their degree of

farsightedness. We first show that if the intra- and inter-community costs are low, i.e.

c+nGC < δ−δ2, then the complete integrated network is stable whatever the composition
of the population in terms of farsightedness.

Proposition 5. Assume low intra-community costs and low inter-community costs, nGC <

∆ or c+nGC < δ− δ2. The set G = {gint}, where gint = gN , is a myopic-farsighted stable

set.

Proof. The set G = {gint}, where gint = gN , satisfies (IS) in Definition 3 since it is a
singleton set. We now show that it also satisfies (ES).
ES. Take any network g 6= gint. Since nGC < ∆ or c + nGC < δ − δ2, it follows that

11The pairwise CP vNM set follows the approach by Page and Wooders (2009) who define the stable

set with respect to path dominance, i.e. the transitive closure of φ.
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Ui(g + ij) > Ui(g) and Uj(g + ij) > Uj(g) as well as Ui(gN) ≥ Ui(g + ij) > Ui(g)

and Uj(gN) ≥ Uj(g + ij) > Uj(g). Hence, the sequence starting at g1 = g, followed by

gk+1 = gk+ ij with ij ∈ gN \gk, for k = 1, 2..., and ending at gK = gN , is a sequence along

which Ui(gk + ij) > Ui(gk), Uj(gk + ij) > Uj(gk), Ui(gN) > Ui(gk) and Uj(gN) > Uj(gk).

Thus, this sequence is a myopic-farsighted improving path from g to gN whatever the

composition of the population in terms of myopia and farsightedness (i.e. NM and NF ),

and G = {gint} satisfies (ES).

When all individuals are myopic each myopic-farsighted stable set contains all pairwise

networks. Hence, many ineffi cient friendship networks can emerge in the long run when

both communities are composed of only myopic individuals.

We next focus on three particular cases: (1) all individuals in the larger green commu-

nity are farsighted, while all individuals in the smaller blue community are myopic; (2) all

individuals in the larger green community are myopic, while all individuals in the smaller

blue community are farsighted; (3) all individuals in both communities are farsighted.

4.1 Greens are farsighted, blues are myopic

We now show that if the dominant group (green community) is farsighted while the other

group (blue community) is myopic, the friendship network where the blue individuals end

up assimilated to the dominant green community is the unique stable network and is

strongly effi cient. Let C1 be the upper bound on the inter-community cost parameter C

such that a blue individual has no incentive to cut a link with another blue individual in

the complete integrated network, and it is given by

C1 =
(n− 2)2(n− 3)

nG(nG − 1)2
∆.

Thus, if C > C1, each myopic blue individual has an incentive to delete some link to

another blue individual in the complete integrated network gN .

Proposition 6. Assume low intra-community costs, 0 < ∆ or c < δ− δ2 and large inter-
community costs, C > C1. Assume all individuals in the blue community are myopic,

NM = NB, and all individuals in the green community are farsighted, NF = NG. Then,

the set G = {gassi,green}, where gassi,green = gN
G ∪ {ij | i ∈ NG, j ∈ NB}, is the unique

myopic-farsighted stable set.

Proof. The set G = {gassi,green} satisfies (IS) in Definition 3 since it is a singleton set. We
now show that it also satisfies (ES).
ES. Take any network g 6= gassi,green. We build in steps a myopic-farsighted improving

path from g to gassi,green.

Step 0: If g is such that blue individuals have links among themselves, i.e., g ∩ gNB 6= ∅
then go to Step 1. Otherwise, starting from g, green individuals first build all the missing

links between green individuals to reach g′ = g ∪ gNG
looking forward to gassi,green, where
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they obtain their highest possible payoff given c < δ − δ2, Ui(gassi,green) = (n− 1)(δ − c).
From g′ green individuals build all the missing links with blue individuals to finally reach

g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB} = gassi,green. Since c < δ − δ2 and g′′ ∩ gNB
= ∅, blue

individuals are assimilated to the green community in g′′ and they are not affected by C

and so they have incentives to add the links with the green individuals.

Step 1: Starting in g, green individuals who are all farsighted (NF = NG) delete

successively all the links (if any) they have with green individuals looking forward to

gassi,green, where they obtain their highest possible payoff given c < δ − δ2, Ui(gassi,green) =

(n− 1)(δ− c). We reach the network g′ = g \ gNG
where there are no links between green

individuals.

Step 2: From g′ = g \ gNG
, since c < δ − δ2, blue individuals who are all myopic have

incentives to build all the links with the green individuals. Green individuals who are

looking forward gassi,green prefer the end network to the current one. We reach the net-

work g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB} where all possible links between blue and green
individuals are formed.

Step 3: From g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB}, since c < δ− δ2, blue individuals who are
all myopic have incentives to build all the missing links between the blue individuals. We

reach the network g′′′ = g′′ ∪ gNB
where all the green individuals are assimilated to the

blue community and the blue community is fully intra-connected. In fact, g′′′ = gassi,blue

and all green individuals prefer gassi,green to gassi,blue.

Step 4: From g′′′ = g′′ ∪ gNB
, green individuals who are all farsighted and look forward

towards gassi,green build all the links between the green individuals to reach gN .

Step 5: From the complete network gN , since C > C1, blue individuals who are myopic

have incentives to delete successively all the links they have with other blue individuals

to finally reach the network gassi,green = gN \ gNB
. The condition C > C1 guarantees that,

along the myopic-farsighted improving path starting at g1 = gN , followed by gk+1 = gk−ij
with ij ∈ gk and i, j ∈ NB for k ≥ 1, and ending at gK = gN \ gNB

= gassi,green, all the

blue individuals have myopic incentives to delete their links with other blue individu-

als. Indeed, consider a sequence starting at g1 = gN , followed by gk+1 = gk − ij with

i ∈ NB, j ∈ Ni(gk) ∩ NB, for k = 1, ...nB − 1. Along this sequence, a blue individual i

successively deletes all her links with the other blue individuals and she has incentives to

cut her kth link to some blue individual if and only if

C > ∆
(n− 2)(n− 1− k)(n− 2− k)

nG(nG − 1)2
.

This condition is satisfied since C > C1 and

C1 = ∆
(n− 2)2(n− 3)

nG(nG − 1)2
≥ ∆

(n− 2)(n− 1− k)(n− 2− k)

nG(nG − 1)2
.

Farsighted green individuals obtain their highest possible payoffin gassi,green and myopic

blue individuals have no incentive to delete any link nor to add a new link since C > C1

and c < δ−δ2. Hence, φ(gassi,green) = ∅. So, since φ(g)∩{gassi,green} 6= ∅ for all g 6= gassi,green
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and φ(gassi,green) = ∅, the set G = {gassi,green} is the unique myopic-farsighted stable set
(any other set would violate (IS) and/or (ES)).

Remark that since φ(g)∩ {gassi,green} 6= ∅ for all g 6= gassi,green and φ(gassi,green) = ∅, the
network gassi,green is the unique myopic-farsightedly pairwise stable network, i.e., PMF =

{gassi,green}.

4.2 Greens are myopic, blues are farsighted

However, when the dominant green community is myopic and the blue community is

farsighted, a conflict between stability and effi ciency can arise. Let C2 be the upper bound

on the inter-community cost parameter C such that a green individual has no incentive

to delete a link with another green individual in the complete integrated network, and it

is given by

C2 =
(n− 2)2(n− 3)

nB(nB − 1)2
∆.

Thus, if C > C2, each myopic green individual has an incentive to delete some link to

another green individual in the complete integrated network gN .

Proposition 7. Assume low intra-community costs, 0 < ∆ or c < δ− δ2 and large inter-
community costs, C > C2. Assume all individuals in the blue community are farsighted,

NF = NB, and all individuals in the green community are myopic, NM = NG. Then,

the set G = {gassi,blue}, where gassi,blue = gN
B ∪ {ij | i ∈ NB, j ∈ NG}, is the unique

myopic-farsighted stable set.

The proof of Proposition 7 is similar to the proof of Proposition 6 by just switching blue

individuals for green ones and vice versa. For completeness, the proof of Proposition 7 can

be found in the appendix. So, when C is large enough (C > C2), the effi cient network in

which the farsighted blue individuals are fully assimilated into the green community12 is

not stable. Farsighted blue individuals stabilize the opposite network in which the myopic

green individuals are fully assimilated into the blue community. Remark that the network

gassi,blue = gN
B ∪ {ij | i ∈ NB, j ∈ NG} is the unique myopic-farsightedly pairwise stable

network, i.e., PMF = {gassi,blue}.

4.3 Greens and blues are farsighted

Proposition 8. Assume low intra-community costs, 0 < ∆ or c < δ − δ2 and inter-

community costs, C > 0. Assume all individuals are farsighted, NF = N . Then, the set

G = {gassi,green} is a myopic-farsighted stable set.
12Since C∗ < C1 < C2 the network in which the farsighted blue individuals are fully assimilated into

the green community is the effi cient network.
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Proof. The set G = {gassi,green} satisfies (IS) in Definition 3 since it is a singleton set. We
now show that it also satisfies (ES).
ES. Take any network g 6= gassi,green. We build in steps a myopic-farsighted improving

path from g to gassi,green.

Step 0: If g is such that g∩gNB 6= ∅ then go to Step 1. Otherwise, starting from g, green

individuals first build all the missing links between green individuals to reach g′ = g∪gNG

looking forward to gassi,green, where they obtain their highest possible payoffgiven c < δ−δ2

and C > 0, Ui(gassi,green) = (n− 1)(δ − c). From g′ green individuals build all the missing

links with blue individuals to finally reach g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB} = gassi,green.

Since c < δ−δ2 and g′′∩gNB
= ∅, blue individuals are assimilated to the green community

in g′′ and they are not affected by C and so they have incentives to add the links with

the green individuals looking forward to gassi,green.

Step 1: Starting in g, green individuals who are all farsighted (NF = N) delete succes-

sively all the links (if any) they have with green and blue individuals looking forward to

gassi,green, where they obtain their highest possible payoff given c < δ − δ2 and C > 0,

Ui(gassi,green) = (n − 1)(δ − c). We reach the network g′ = g ∩ gNB
where all the links

involving green individuals in g have been deleted. Thus, g′ ⊆ gN
B
.

Step 2: From g′ = g ∩ gNB
, since nG ≥ nB, all blue individuals who are all farsighted

prefer gassi,green to g′ and so are ready to delete all their links looking forward to gassi,green.

We reach the empty network g∅.

Step 3: From the empty network g∅ green individuals and blue individuals who are far-

sighted and look forward to gassi,green build all the links in gN
G ∪ {ij | i ∈ NG, j ∈ NB}

to finally reach the network gassi,green. Since along the myopic-farsighted improving blue

individuals have no links to other blue individuals, the payoffs of both green and blue

individuals are not affected by C. So, each time they add a link they all prefer the end

network gassi,green to the current network.

Hence, φ(g) ∩ {gassi,green} 6= ∅ for all g 6= gassi,green and G = {gassi,green} satisfies (ES).

Notice that if nB ≤ nG ≤ nB + 1, we can replicate the above proof (by just switching

blue individuals for green ones and vice versa) to show that the set G = {gassi,blue} is
a myopic-farsighted stable set. However, once nG > nB + 1, the set G = {gassi,blue}
is never a myopic-farsighted stable set because φ(gseg) ∩ {gassi,blue} = ∅. Moreover, the
set G = {gseg} is never a myopic-farsighted stable set because φ(gassi,green) ∩ {gseg} = ∅.
Thus, the complete segregation network gseg and the network gassi,blue in which all green

individuals are fully assimilated into the smaller blue community are unlikely to emerge

in the long run when all individuals are farsighted.

Remark 1. Assume low intra-community costs, 0 < ∆ or c < δ−δ2 and inter-community
costs, C > 0. Assume all individuals are farsighted, NF = N .

(i) The set G = {gassi,blue} is never a myopic-farsighted stable set if nG > nB + 1.

(ii) The set G = {gseg} is never a myopic-farsighted stable set.
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5 Intermediate intra-community costs

We now consider situations where intra-community costs are intermediate, i.e. δ − δ2 <
c < δ. So, it becomes more expensive to build links with individuals from the same

community. We denote by g∗i the star network where individual i is the center of the

star.

Proposition 9. Assume intermediate intra-community costs, δ − δ2 < c < δ, NF 6= ∅
and NM 6= ∅. If δ−δ2 < c+C < (δ−δ2)(1+δ(nF −1)), then the set G∗ =

{
g∗i | i ∈ NM

}
is the unique myopic-farsighted stable set.

Proof. We first show that G∗ =
{
g∗i | i ∈ NM

}
satisfies both internal stability (i.e. con-

dition (IS) in Definition 3) and external stability (i.e. condition (ES) in Definition 3).

IS. Farsighted individuals are peripherals in all networks in G∗ so that they always obtain
the same payoff: Ui(g) = δ + (n − 2)δ2 − c for all i ∈ NF , g ∈ G∗. Myopic individuals
who are peripherals have no incentive to delete their single link (δ + (n − 2)δ2 − c > 0)

nor to add a new link to any other individual (2δ+ (n−3)δ2−2c < δ+ (n−2)δ2− c since
δ − δ2 < c). The center who is myopic has no incentive to delete one link since c < δ.

Hence, for every g, g′ ∈ G∗, it holds that g′ /∈ φ(g).

ES. Take any network g /∈ G∗. We build in steps a myopic-farsighted improving path

from g to some g∗i ∈ G∗.
Step 1: Starting in g, farsighted individuals delete all their links successively looking for-
ward to some g∗i ∈ G∗, where they obtain their highest possible payoff given δ − δ2 < c.

Notice that if g is a star network where the center is a farsighted individual, then the

center starts by deleting all her links since only the center is better off in g∗i compared to

g (and we go directly to Step 8). We reach a network g1 where all farsighted individuals

have no link and myopic individuals only keep the links to myopic individuals they had

in g.

Step 2: From g1, looking forward to g∗i ∈ G∗, farsighted individuals build a star network
g∗jF restricted to farsighted individuals with individual j being the center (i.e. g∗jF is

such that j ∈ NF , Nj(g
∗jF ) = NF \ {j} and Nk(g

∗jF ) = {j} for all k ∈ NF \ {j}), and
we obtain g2 = g1 ∪ g∗jF where all farsighted individuals are still disconnected from the

myopic individuals.

Step 3: From g2, looking forward to g∗i ∈ G∗, the farsighted individual j who is the

center of g∗jF adds a link to some myopic individual, say individual 1. Individual j is

better off in g∗i compared to g2, δ + (n − 2)δ2 − c > (n − nM − 1)(δ − c), while indi-

vidual 1 is better in g2 + j1 if c + C < δ + δ2(nF − 1). This last inequality holds since

c+ C < (δ − δ2)(1 + δ(nF − 1)) < δ + δ2(nF − 1).

Step 4: From g2 + j1, looking forward to g∗i ∈ G∗, the farsighted individual j adds a
link successively to the myopic individuals who are neighbors of individual 1 (if any), say

individual 2. Individual 2 who is myopic and linked to individual 1 has an incentive to

19



add the link j2 if δ2 + (n − nM − 1)δ3 < δ − c − C + (n − nM − 1)δ2. Thus, a suffi cient

condition for adding the link is

c+ C < δ − δ2 + (n− nM − 1)(δ2 − δ3), (2)

or

c+ C < (δ − δ2)(1 + δ(nF − 1)) (3)

where n − nM is the number of farsighted individuals (nF ). In the network g2 + j1 +{
jl | l ∈ N1(g2 + j1) ∩NM

}
, individual j is (directly) linked to all other farsighted indi-

viduals, individual 1 and all neighbors of individual 1.

Step 5: From g2 + j1 +
{
jl | l ∈ N1(g2 + j1) ∩NM

}
, the myopic individuals who are

neighbors of individual 1 and have just added a link to the farsighted individual j delete

their link successively with individual 1. They have incentives to do so since δ−δ2 < c < δ

and we reach g2 + j1 +
{
jl | l ∈ N1(g2 + j1) ∩NM

}
−
{

1l | l ∈ N1(g2 + j1) ∩NM
}
.

Step 6: Next, looking forward to g∗i ∈ G∗, the farsighted individual j adds a link suc-
cessively to the myopic individuals who are neighbors of some l ∈ N1(g2 + j1) ∩NM and

we proceed as in Step 4 and Step 5. We repeat this process until we reach a network g3

where there is no myopic individual linked directly to the myopic neighbors of individual

j (i.e. Nk(g
3) ∩NM = ∅ for all k ∈ Nj(g

3) ∩NM).

Step 7: From g3, individual j adds a link to some myopic individual belonging to another

component (if any) as in Step 3 and we proceed as in Step 4 to Step 6. We repeat this

process until we end up with a star network g∗j with individual j (who is farsighted) in

the center (i.e. Nj(g
∗j) = N \ {j} and Nk(g

∗j) = {j} for all k ∈ N \ {j}).
Step 8: From g∗j, looking forward to g∗i ∈ G∗, the farsighted individual j deletes all

her links successively to reach the empty network g∅. From g∅, myopic and farsighted

individuals have both incentives (since δ > c) to add links successively to build the star

network g∗i ∈ G∗ where some myopic individual i ∈ NM is the center.

We now show that G∗ is the unique myopic-farsighted stable set. Farsighted individuals

who are peripherals in all networks in G∗ obtain their highest possible payoff. Myopic

individuals who are peripherals have no incentive to delete their single link nor to add a

new link. The center who is myopic has no incentive to delete one link. Hence, φ(g) = ∅
for every g ∈ G∗. Suppose that G 6= G∗ is another myopic-farsighted stable set. (1) G

does not include G∗: G + G∗. External stability would be violated since φ(g) = ∅ for
every g ∈ G∗. (2) G includes G∗: G ! G∗. Internal stability would be violated since for

every g ∈ G \G∗, it holds that φ(g) ∩G∗ 6= ∅.

Thus, when intra-community costs are intermediate and the population is formed by

myopic and farsighted individuals, the set of star networks with a myopic individual at

the center of the star is both a myopic-farsighted stable set and strongly effi cient. From

the proof of Proposition 9 we get the characterization of the myopic-farsightedly pairwise

stable networks: if δ− δ2 < c+C < (δ− δ2)(1 + δ(nF − 1)), then PMF =
{
g∗i | i ∈ NM

}
.
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Once all individuals become farsighted (i.e. N = NF ), for δ−δ2 < c < δ and for C > 0,

every set consisting of a star network encompassing all individuals is a myopic-farsighted

stable set

Proposition 10. Assume intermediate intra-community costs, δ − δ2 < c < δ, and all

individuals farsighted, N = NF . If g is a star network then {g} is a myopic-farsighted
stable set.

Proof. Since each set is a singleton set, internal stability (IS) is satisfied. (ES) Take any
network g 6= g∗i, we need to show that φ(g) 3 g∗i. (i) Suppose g 6= g∗j (j 6= i). From

g, looking forward to g∗i (where they obtain their highest possible payoff), farsighted

individuals (6= i) delete all their links successively to reach the empty network. From

g∅, farsighted individuals have incentives (since δ > c) to add links successively to build

the star network g∗i with individual i in the center. (ii) Suppose g = g∗j (j 6= i). From

g, looking forward to g∗i, the farsighted individual j deletes all her links successively to

reach the empty network. From g∅, farsighted individuals have incentives (since δ > c) to

add links successively to build the star network g∗i with individual i in the center.

While every set consisting of a star network is a myopic-farsighted stable set, there may

be other myopic-farsighted stable sets. Nevertheless, every star network encompassing all

individuals is strongly effi cient.

6 Conclusion

We have reconsidered de Marti and Zenou (2017) model of friendship network formation

where individuals belong to two different communities (greens and blues). We have added

a second heterogeneity dimension: individuals can be either myopic or farsighted. Our

main results for low intra-community costs are summarized in Figure 8. When all individ-

uals are myopic many friendship networks (complete integration, complete segregation,

(partial) assimilation, ...) can be pairwise stable and a tension between effi ciency and

stability may occur. Once the population becomes mixed in terms of farsightedness and

myopia, most ineffi cient friendship networks tend to be destabilized. When the larger

(smaller) community is farsighted while the smaller (larger) community is myopic, the

friendship network where the myopic community is assimilated into the farsighted com-

munity emerges in the long run when inter-community costs are large enough. Once all

individuals are farsighted, the friendship network where the smaller community ends up

being assimilated into the dominant community is likely to arise. When inter-community

costs are small enough, the complete integration is stable whatever the number of far-

sighted and myopic individuals in both communities.

What would happen if there are farsighted and myopic individuals in both communi-

ties when intra-community costs are low and inter-community costs are large? Take the

friendship network g = {12, 13, 14, 23, 24, 34, 56} depicted in Figure 6 with NF = {2, 3, 4},
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Figure 8: A summary of stable friendship networks with low intra-community costs.

NM = {1, 5, 6}, NG = {1, 2, 3} and NB = {4, 5, 6}. There are no myopic-farsighted im-
proving paths emanating from g when inter-community costs are large; φ(g) = ∅. Hence,
this friendship network, where the farsighted blue individual is assimilated to the domi-

nant green community, belongs to all myopic-farsighted stable sets (if they exist).13 How-

ever, the complete segregated network g′ = {12, 13, 23, 45, 46, 56} will never occur since
g ∈ φ(g′) and G ⊇ {g, g′} would violate internal stability. Indeed, the farsighted blue indi-
vidual 4 has incentives to first delete her links in g′ and next build the links with all green

individuals to form g. Providing a full-fledged characterization of the myopic-farsighted

stable sets turns to be extremely hard, if not impossible. To summarize, depending on

the costs for interacting, either a fully integrated society or a (partially) assimilated so-

ciety are likely to arise in the long run. In addition, farsightedness seems to dampen the

tension between effi ciency and stability in friendship networks when individuals belong to

different communities.

Notice that the degree of farsightedness of an individual is likely to be correlated

with her level of education or grades at school. Hence, for future research it would be

interesting to confront our theoretical predictions with data. (i) In presence of only high

educated communities, is it likely that the smaller community ends up assimilated into

the dominant one? (ii) In presence of a high educated community and a low educated

community, is it likely that the lower educated community ends up assimilated into the

high educated one? (iii) Complete segregation mostly occurs when both communities are

low educated. (iv) When one community has a large number of high educated individuals

while the other community has a low number of high educated individuals, is it likely

that the high educated individuals belonging to the less educated community end up

13Patacchini and Zenou (2016) look at friendship networks among US high-school students (Add Health

data). They find that, for mixed schools, most of the white students have white friends while one part of

the black students has mostly white friends and the other part has mostly black friends.
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assimilated into the more educated community?
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Appendix

A More pairwise stable friendship networks

We now show that any network where nG green individuals are fully intra-connected,

nB blue individuals are fully intra-connected, and one green individual is linked to all

blue individuals is pairwise stable for intermediate inter-community costs. In Figure 9 we

depict such a network.
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Figure 9: Both communities are fully intra-connected and one green individual is linked

to all blue individuals.

Proposition 11. Assume low intra-community costs, 0 < ∆ or c < δ − δ2. The network
g̃ = gN

G ∪ gNB ∪ {ij | j ∈ NB, i = ĩ with ĩ ∈ NG} where nG green individuals are fully
intra-connected, nB blue individuals are fully intra-connected, and one green individual is

linked to all blue individuals is pairwise stable if and only if

C3 < C < C3
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where

C3 =
nB

nB − 1
∆;

C3 = min

{
(n− 2)(n− 3)

(nG − 1)(nG − 2)
∆,

(n− 2)(n− 3)

(nB)(nB − 1)
∆,

(n− 2)

(nG − 1)

(
∆ + δ2(1− δ)(nG − 1)

)}
.

Proof. Individual ĩ ∈ NG is the green individual who is linked to all individuals in g̃.

(i) In g̃ individual ĩ has no incentive to cut a link with a blue individual if and only if

C <
(n− 2)(n− 3)

(nG − 1)(nG − 2)
∆.

In g̃ any blue individual has no incentive to cut a link with the green individual ĩ if and

only if

C <
(n− 2)

(nG − 1)

(
∆ + δ2(1− δ)(nG − 1)

)
.

Combining these two conditions, a link between ĩ and a blue individual will not be deleted

if and only if

C < min

{
(n− 2)(n− 3)

(nG − 1)(nG − 2)
∆,

(n− 2)

(nG − 1)

(
∆ + δ2(1− δ)(nG − 1)

)}
.

(ii) In g̃ player ĩ has no incentive to cut a link with a green individual if and only if

C <
(n− 2)(n− 3)

(nB)(nB − 1)
∆.

Since ∆ + nBδ2(1− δ) > 0, any green individual i 6= ĩ has no incentive to delete her link

with ĩ. Moreover, since 0 < ∆, any green individual i 6= ĩ has no incentive to delete her

link with another green individual j 6= ĩ. Thus, a link between any two green individuals

will not be deleted if and only if

C <
(n− 2)(n− 3)

(nB)(nB − 1)
∆.

(iii) Since 0 < ∆, any blue individual has no incentive to delete her link with another

blue individual.

(iv) In g̃ any green individual i 6= ĩ has no incentive to add a link with a blue individual

if and only if

C >
nB

nB − 1
∆.

In addition, any blue individual has no incentive to add a link to a green individual i 6= ĩ

if and only if

C >
nB(n− 2)

(nB − 1)(n− 2)− (nG − 1)
∆.
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Combining these two conditions, a link between any green individual i 6= ĩ and a blue

individual will not be added if and only if

C >
nB

nB − 1
∆ = C3.

From (i), (ii), (iii) and (iv) we have that g̃ is pairwise stable if and only if C3 < C <

C3, where

C3 = min

{
(n− 2)(n− 3)

(nG − 1)(nG − 2)
∆,

(n− 2)(n− 3)

(nB)(nB − 1)
∆,

(n− 2)

(nG − 1)

(
∆ + δ2(1− δ)(nG − 1)

)}
.

We now show that any network where both communities are fully intra-connected,

some blue individuals are assimilated to the green community and some green individuals

are assimilated to the blue community is pairwise stable for intermediate inter-community

costs. In Figure 10 we depict such a network.
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Figure 10: One green and one blue individual are assimilated to the other community.

Proposition 12. Assume low intra-community costs, 0 < ∆ or c < δ − δ2. The network
ĝ = gN

G\NG1 ∪ gNB\NB1 ∪ {ij | i ∈ NB1 , j ∈ NG} ∪ {ij | i ∈ NG1 , j ∈ NB}, where both
communities are fully intra-connected, nB1 (1 ≤ nB1 < nB) blue individuals are assimilated

to the green community and nG1 (1 ≤ nG1 < nG) green individuals are assimilated to the

blue community, is pairwise stable if and only if

C > max

{
nB(nB + nG1 − nB1 − 2)

(nB − nB1)(nB − nB1 − 1)
∆,

nG(nG + nB1 − nG1 − 2)

(nG − nG1)(nG − nG1 − 1)
∆,

(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nB − nB1))

}
.

Proof. In ĝ the nB1 (1 ≤ nB1 < nB) blue individuals are fully assimilated to the green

community (with payoffnG(δ−c)) and the nG1 (1 ≤ nG1 < nG) green individuals are fully

assimilated to the blue community (with payoff nB(δ− c)), while the other nB −nB1 blue
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individuals obtain (nB − nB1 + nG1 − 1)(δ − c) and the other nG − nG1 green individuals
obtain (nG − nG1 + nB1 − 1)(δ − c). Since 0 < ∆ or c < δ − δ2, all individuals have no
incentive to delete a link in ĝ.

(i) In ĝ any green individual i ∈ NG1 has no incentive to add a link to another green

individual j ∈ NG \NG1 if and only if

C >
nB(nB + nG1 − nB1 − 2)

(nB − nB1)(nB − nB1 − 1)
∆.

Since∆+δ2(1−δ)(nB−nB1) > 0, any green individual j ∈ NG\NG1 has always incentives

to form a link with a green individual i ∈ NG1 . Hence, a link between a green individual

i ∈ NG1 and a green individual j ∈ NG \NG1 will not be formed in ĝ if and only if

C >
nB(nB + nG1 − nB1 − 2)

(nB − nB1)(nB − nB1 − 1)
∆.

(ii) In ĝ any blue individual i ∈ NB1 has no incentive to add a link to a blue individual

j ∈ NB \NB1 if and only if

nG(nG + nB1 − nG1 − 2)

(nG − nG1)(nG − nG1 − 1)
∆.

Since ∆+δ2(1−δ)(nG−nG1) > 0, any blue individual j ∈ NB \NB1 has always incentives

to form a link with a blue individual i ∈ NB1 . Hence, a link between a blue individual

i ∈ NB1 and a blue individual j ∈ NB \NB1 will not be formed in ĝ if and only if

nG(nG + nB1 − nG1 − 2)

(nG − nG1)(nG − nG1 − 1)
∆.

(iii) In ĝ any blue individual i ∈ NB1 has no incentive to add a link to another blue

individual j ∈ NB1 if and only if

C >
nG(nG + nB1 − nG1 − 2)

(nG − nG1)(nG − nG1 − 1)
∆.

(iv) In ĝ any green individual i ∈ NG1 has no incentive to add a link to another green

individual j ∈ NG1 if and only if

C >
nB(nB + nG1 − nB1 − 2)

(nB − nB1)(nB − nB1 − 1)
∆.

(v) In ĝ any green individual i ∈ NG \ NG1 has no incentive to add a link to a blue

individual j ∈ NB \NB1 if and only if

C >
(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nB − nB1)).

In ĝ any blue individual j ∈ NB \NB1 has no incentive to add a link to a green individual

i ∈ NG \NG1 if and only if

C >
(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nG − nG1)).
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Hence, a link between a green individual i ∈ NG\NG1 and a blue individual j ∈ NB \NB1

will not be formed in ĝ if and only if

C > min

{
(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nB − nB1)),

(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nG − nG1))

}
.

From (i), (ii), (iii), (iv) and (v) we have that the network ĝ is pairwise stable if and
only if

C > max

{
nB(nB + nG1 − nB1 − 2)

(nB − nB1)(nB − nB1 − 1)
∆,

nG(nG + nB1 − nG1 − 2)

(nG − nG1)(nG − nG1 − 1)
∆,

(nG + nB1 − nG1 − 1)(nB + nG1 − nB1 − 1)

(nG − nG1 − 1)(nB − nB1 − 1)
(∆ + δ2(1− δ)(nB − nB1))

}
.

B Proofs

Proof of Proposition 2. Assume low intra-community costs, 0 < ∆ or c < δ − δ2.
(i) We show that the network gassi,green = gN

G ∪ {ij | i ∈ NG, j ∈ NB} where all the
blue community is fully assimilated to the green community is pairwise stable if and only

if

C >
(n− 2)

(nG − 1)
∆.

In gassi,green all green individuals get as payoff (n − 1)(δ − c) and all blue individuals get
as payoff (nG)(δ − c). Since 0 < ∆, all blue individuals have no incentive to cut a link

and all green individuals have no incentive to cut a link with a green or blue individual.

In gassi,green, any blue individual will not add a link to another blue individual if and only

C >
(n− 2)

(nG − 1)
∆.

(ii) We show that the network gassi,blue = gN
B ∪ {ij | i ∈ NB, j ∈ NG} where all the

green community is fully assimilated to the blue community is pairwise stable if and only

if

C >
(n− 2)

(nB − 1)
∆.

In gassi,blue all blue individuals get as payoff (n − 1)(δ − c) and all green individuals get
as payoff (nB)(δ − c). Since 0 < ∆, all green individuals have no incentive to cut a link

and all blue individuals have no incentive to cut a link with a green or blue individual. In

gassi,blue, any green individual will not add a link to another green individual if and only

C >
(n− 2)

(nB − 1)
∆.
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(iii) Take any NB1  NB such that 1 ≤ nB1 ≤ nB − 2. We show that the network

gpassi,green = gN
G ∪ gNB\NB1 ∪ {ij | i ∈ NG, j ∈ NB1} where nB1 blue individuals are

assimilated to the green individuals and all other blue individuals are intra-connected

and segregated is pairwise stable if and only if

C >
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

(iiia) In gpassi,green, all segregated blue individuals get as payoff (nB − nB1 − 1)(δ − c),

all assimilated blue individuals get as payoff (nG)(δ − c) and all green individuals get as
payoff (nG + nB1 − 1)(δ− c). Since 0 < ∆, all individuals have no incentive to cut a link.

In gpassi,green, any green individual will not add a link to a blue individual j ∈ NB \NB1

if and only if

C >
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

In gpassi,green, any blue individual j ∈ NB \NB1 will not add a link to a green individual

if and only if

C >
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nG + nB1)δ2

)
.

Hence, by mutual consent, a link between a blue individual j ∈ NB \ NB1 and a green

individual will not be added in gpassi,green if and only if

C > min

{
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nG + nB1)δ2

)
,
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)}
=

(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

(iiib) In gpassi,green, any blue individual i ∈ NB1 will not add a link to a blue individual

j ∈ NB \NB1 if and only if

C >
(nG + nB1 − 2)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

However, any blue individual j ∈ NB \NB1 has always incentives to add a link to a blue

individual i ∈ NB1 since 0 < ∆. Hence, a link between a blue individual i ∈ NB1 and a

blue individual j ∈ NB \NB1 will not be added in gpassi,green if and only if

C >
(nG + nB1 − 2)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

(iiic) In gpassi,green, any blue individual i ∈ NB1 will not add a link to another blue

individual j ∈ NB1 if and only if

C >
(nG + nB1 − 2)

(nG − 1)
∆.
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From (iiia), (iiib) and (iiic), we have that gpassi,green (with 1 ≤ nB1 ≤ nB − 2) is pairwise

stable if and only if

C >
(nG + nB1 − 1)

(nG − 1)

(
∆ + (nB − nB1)δ2

)
.

(iv) Take any NG1  NG such that 1 ≤ nG1 ≤ nG − 2. We show that the network

gpassi,blue = gN
B ∪ gNG\NG1 ∪ {ij | i ∈ NB, j ∈ NG1} where nG1 green individuals are

assimilated to the blue individuals and all other green individuals are intra-connected

and segregated is pairwise stable if and only if

C >

{
Ĉ1 if nG1 ≤ 1

2
(nG − nB);

Ĉ2 if nG1 > 1
2
(nG − nB);

where

Ĉ1 = max

{
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nB + nG1)δ2

)
,
(nB + nG1 − 2)

(nB − 1)

(
∆ + (nG − nG1)δ2

)}
;

Ĉ2 =
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nG − nG1)δ2

)
.

(iva) In gpassi,blue, all segregated green individuals get as payoff (nG − nG1 − 1)(δ − c),

all assimilated green individuals get as payoff (nB)(δ − c) and all blue individuals get as
payoff (nB + nG1 − 1)(δ− c). Since 0 < ∆, all individuals have no incentive to cut a link.

In gpassi,blue, any blue individual will not add a link to a green individual j ∈ NG \NG1 if

and only if

C >
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nG − nG1)δ2

)
.

In gpassi,blue, any green individual j ∈ NG \NG1 will not add a link to a blue individual if

and only if

C >
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nB + nG1)δ2

)
.

Hence, by mutual consent, a link between a green individual j ∈ NG \ NG1 and a blue

individual will not be added in gpassi,blue if and only if

C > min

{
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nB + nG1)δ2

)
,
(nB + nG1 − 1)

(nB − 1)

(
∆ + (nG − nG1)δ2

)}
.

(ivb) In gpassi,blue, any green individual i ∈ NG1 will not add a link to another green

individual j ∈ NG \NG1 if and only if

C >
(nB + nG1 − 2)

(nB − 1)

(
∆ + (nG − nG1)δ2

)
.
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However, any green individual j ∈ NG \ NG1 has always incentives to add a link to a

green individual i ∈ NG1 since 0 < ∆. Hence, a link between a green individual i ∈ NG1

and a green individual j ∈ NG \NG1 will not be added in gpassi,blue if and only if

C >
(nB + nG1 − 2)

(nB − 1)

(
∆ + (nG − nG1)δ2

)
.

(ivc) In gpassi,blue, any green individual i ∈ NG1 will not add a link to another green

individual j ∈ NG1 if and only if

C >
(nB + nG1 − 2)

(nB − 1)
∆.

From (iva), (ivb) and (ivc), we have that gpassi,blue (with 1 ≤ nG1 ≤ nG − 2) is pairwise

stable if and only if

C >

{
Ĉ1 if nG1 ≤ 1

2
(nG − nB);

Ĉ2 if nG1 > 1
2
(nG − nB).

�

Proof of Proposition 3. Assume low intra-community costs, 0 < ∆ or c < δ − δ2. In
the complete segregated network gseg, a green individual obtains (nG−1)(δ− c) as payoff,
while a blue obtains (nB − 1)(δ − c) as payoff. In the complete integrated network gint, a
green individual and a blue individual obtain, respectively,

(n− 1)(δ − c)− nBn
G − 1

n− 2

nB − 1

n− 2
C and (n− 1)(δ − c)− nGn

B − 1

n− 2

nG − 1

n− 2
C

as payoff. In the network where the blue individuals are fully assimilated to the green

community gassi,green, a green individual obtains (n − 1)(δ − c) as payoff, while a blue

obtains (nG)(δ− c) + (nB−1)δ2 as payoff. In the network where the green individuals are

fully assimilated to the blue community gassi,blue, a blue individual obtains (n− 1)(δ − c)
as payoff, while a green obtains (nB)(δ − c) + (nG − 1)δ2 as payoff. Since, nG ≥ nB, the

network gassi,blue is never better than the network gassi,green in terms of strong effi ciency.

Comparing the network gassi,green with the complete integrated network gint, we have that

the complete integrated network gint is better than the network gassi,green in terms of strong

effi ciency (i.e. sum of the payoffs of all individuals) if and only if

C <
(n− 2)2

2nG(nG − 1)
∆ = C∗.

In addition, we have that the network gassi,green is always better than the complete seg-

regated network gseg in terms of strong effi ciency: nG(n − 1)(δ − c) + nB(nG)(δ − c) +

nB(nB − 1)δ2 > nG(nG − 1)(δ − c) + nB(nB − 1)(δ − c).
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�

Proof of Proposition 4.
In a star network, the center gets (n− 1)(δ − c) as payoff while the individuals at the

periphery get δ+(n−2)δ2−c as payoff. Since δ−δ2 < c < δ, individuals at the periphery

of a star network get their highest possible payoff. Hence, they will not add a link between

them nor they will cut a link with the center. Obviously, the center has no incentive to

cut a link to a peripheral individual. Thus, any star network is pairwise stable. Jackson

and Wolinsky (1996) show that a star network is strongly effi cient for δ− δ2 < c < δ (and

C = 0). Hence, such star network is also strongly effi cient for δ − δ2 < c < δ and C > 0.

�

Proof of Proposition 7. The set G = {gassi,blue} satisfies (IS) in Definition 3 since it is
a singleton set. We now show that it also satisfies (ES).
ES. Take any network g 6= gassi,blue. We build in steps a myopic-farsighted improving path

from g to gassi,blue.

Step 0: If g is such that g ∩ gNG 6= ∅ then go to Step 1. Otherwise, starting from g, blue

individuals first build all the missing links between blue individuals to reach g′ = g∪ gNB

looking forward to gassi,blue, where they obtain their highest possible payoffgiven c < δ−δ2,
Ui(gassi,blue) = (n − 1)(δ − c). From g′ blue individuals build all the missing links with

green individuals to finally reach g′′ = g′ ∪ {ij | i ∈ NB, j ∈ NG} = gassi,blue. Since

c < δ − δ2 and g′′ ∩ gNG
= ∅, green individuals are assimilated to the blue community in

g′′ and they are not affected by C and so they have incentives to add the links with the

blue individuals.

Step 1: Starting in g, blue individuals who are all farsighted (NF = NB) delete succes-

sively all the links (if any) they have with blue individuals looking forward to gassi,blue,

where they obtain their highest possible payoffgiven c < δ−δ2, Ui(gassi,blue) = (n−1)(δ−c).
We reach the network g′ = g \ gNB

where there are no links between blue individuals.

Step 2: From g′ = g \ gNB
, since c < δ − δ2, green individuals who are all myopic

have incentives to build all the links with the blue individuals. Blue individuals who are

looking forward gassi,blue prefer the end network to the current one. We reach the network

g′′ = g′∪{ij | i ∈ NB, j ∈ NG} where all possible links between green and blue individuals
are formed.

Step 3: From g′′ = g′∪{ij | i ∈ NB, j ∈ NG}, since c < δ−δ2, green individuals who are
all myopic have incentives to build all the missing links between the green individuals. We

reach the network g′′′ = g′′∪gNG
where all the blue individuals are assimilated to the green

community and the green community is fully intra-connected. In fact, g′′′ = gassi,green and

all blue individuals prefer gassi,blue to gassi,green.

Step 4: From g′′′ = g′′ ∪ gNG
, blue individuals who are all farsighted and look forward

towards gassi,blue build all the links between the blue individuals to reach gN .
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Step 5: From the complete network gN , since C > C2, green individuals who are myopic

have incentives to delete successively all the links they have with other green individuals

to finally reach the network gassi,blue = gN \ gNG
. The condition C > C2 guarantees that,

along the myopic-farsighted improving path starting at g1 = gN , followed by gk+1 = gk−ij
with ij ∈ gk and i, j ∈ NG for k ≥ 1, and ending at gK = gN \ gNG

= gassi,blue, all the

green individuals have myopic incentives to delete their links with other green individ-

uals. Indeed, consider a sequence starting at g1 = gN , followed by gk+1 = gk − ij with
i ∈ NG, j ∈ Ni(gk) ∩ NG, for k = 1, ...nG − 1. Along this sequence, a green individual i

successively deletes all her links with the other green individuals and she has incentives

to cut her kth link to some green individual if and only if

C > ∆
(n− 2)(n− 1− k)(n− 2− k)

nB(nB − 1)2
.

This condition is satisfied since C > C2 and

C2 = ∆
(n− 2)2(n− 3)

nB(nB − 1)2
≥ ∆

(n− 2)(n− 1− k)(n− 2− k)

nB(nB − 1)2
.

Farsighted blue individuals obtain their highest possible payoff in gassi,blue and myopic

green individuals have no incentive to delete any link nor to add a new link since C > C2

and c < δ − δ2. Hence, φ(gassi,blue) = ∅. So, since φ(g)∩ {gassi,blue} 6= ∅ for all g 6= gassi,blue

and φ(gassi,blue) = ∅, the set G = {gassi,blue} is the unique myopic-farsighted stable set (any
other set would violate (IS) and/or (ES)).

�
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